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Chapter 1

Introduction

Variance estimation in survey sampling is of major importance. It gives information on the
accuracy of the estimators and allows to build confidence intervals. This report intends to make
a review of the major techniques used to derive estimators of the variance of an estimated
parameter of interest t̂ in the framework of survey sampling. Särndal, Swensson & Wretman
(1989) state that a variance estimator V̂ (t̂) should accomplish at the same time all the following
requests: it must have good properties with respect to the sampling design, a simple form and
applicability in general. If a system of auxiliary information exists, then it would be advisable
that the derived estimator would have good properties with respect to a regression model,
including applicability to any linear regression model. At the same time, the variance estimator
must have such a form that it can be implemented into a computer software. The principal
concern is that such a variance estimator would be able to lead to valid confidence interval for
the estimated parameter of study:

t̂+z1−α
2
(V̂ (t̂))

1
2 .

There are two main directions for deriving a valid quantity for the unknown variance V (t̂):
(a) find an unbiased estimator for the variance when we can calculate it,
(b) find a consistent estimator for the approximative variance.

The choice between the two possibilities depends on the particular features of the survey
sampling and on the quantity to be estimated.

There are situations when the minimal value of the variance is desired. Godambe (1955)
shows that there exists no linear estimator for the population total with uniformly minimum
variance but in more restrictive classes of estimators and certain designs or under a model of
superpopulation, we can derive such estimators. An example is the optimum regression esti-
mator obtained by Montanari (1987); unfortunately, it is more of theoretical interest since the
obtained value of the optimal variance depends on all the values of the variable of study which
are unknown and thus it can not be calculated explicitly in practice. Problems of this kind are
discussed in more details in Cassel et al. 1977, ch 3.

Chapter 2 deals with the estimation of the fundamental quantities in survey sampling, the
total and the mean of a finite population for simple plans with equal probabilities. The Horvitz-
Thompson (H-T) estimator is introduced and a general unbiased variance estimator is derived.
For the most usual survey designs, we give the precise expressions of the H-T estimator as well as
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6 CHAPTER 1. INTRODUCTION

of the variance estimator. Except in a few cases, this general variance estimator has a complicate
expression and it is hard to calculate. This is mainly due to the evaluation of a double sum and
to the difficulty of calculating the probabilities of inclusion of second order.

Chapter 3 deals with stratified sampling design and chapter 4 with plans proportional to
size. We treat in chapter 5 the multi-stage sampling design with application to two-stage and
cluster designs.

In chapter 6, we propose to extend the derivation of a variance estimator when the parameter
of interest has a complex form (e.g. non-linear statistics). This will be done with the help of
the Taylor expansion. After a presentation of the theoretical results, the technique is used to
derive the variance estimator for the ratio estimator, for the mean of the population and for the
coefficient of multiple regression.

In the above chapters, no appeal to the auxiliary information was done. Or, it is well-known
that the good use of it improves the results. Chapter 7 deals with ways of incorporating auxiliary
information in estimating totals and means. We present the calibration technique proposed by
Deville & Särndal (1992) and Deville (2000) and the superpopulation approach. This approach
introduces a new structure for our population. Until now, chapter 2-6, we derived results within
the context of the fixed population approach (Cassel et al. 1977) namely each population unit is
associated with a fixed and unknown real number which is the value of the variable of interest.
For the superpopulation approach, each population unit will be the outcome of a random variable
for which a stochastic structure is specified.

Notations

Let us consider a finite population U composed of N elements

U = {u1, . . . , uk, . . . , uN} = {1, . . . , k, . . . , N}

where for simplicity, we identify the k-th element of U denoted by uk with its label k. We will
consider in the next that our population is such that each unit uk can be spotted in a unique
way by its label, k. This means that the units have the property of identifiability (Cassel et al
1977).

Let consider Y, a variable of interest for which the value for the k-th unit, denoted by yk, is
unknown. We designate by y = (y1, . . . , yN ) the parameter of the finite population and any real
function of it is called a parametric function. The goal of a survey sampling is to make inference
about a parametric function such as the total or the mean for example, but more complicated
functions may be of interest (the mode, various population quantiles, the population variance).

In the case of a survey sampling, the inference is based on information obtained only from a part
of U , called sample, obtained from U by a probabilistic selection scheme. More precisely, let S
be the set of all possible subsets s of U , s ⊂ P(U). There are 2N possible subsets, considering
the empty set and the whole population U ; a sample s is an element of S. Given U , let p(s) be
the probability of selecting s ∈ S. In other words, the function p(s) which is called the sampling
design satisfies the following conditions:

1. p(s) ≥ 0 for all s ∈ S
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2.
∑

s∈S p(s) = 1.

In the present work, we will deal only with noninformative designs, namely with designs for
which the function p(·) does not depend on the values of Y. For this situation, Basu (1958)
shows that it is sufficient to consider only the distinct elements of the sample.

We note by ns the sample size, namely the number of elements of s; depending on the chosen
scheme, ns may be fixed or not for all the samples s ∈ S.

We denote by Ik = 1{k∈s} for all k ∈ U the sample membership indicator (Särndal et al 1992).
The random variable Ik is a Bernoulli variable indicating if the unit k belongs or not to the
sample.

Supposing that a sampling design has been fixed, the probabilities of inclusion are defined as
follows :

1. πk, the first order inclusion probability, is the probability that the element k will be in-
cluded in a sample . For all k ∈ U , πk =

∑
s3k p(s).

2. πkl, the second order inclusion probability, is the probability that the elements k and l will
be included in a sample. For all k, l ∈ U , πkl =

∑
s3k&l p(s).

Result 1 : For a given sampling design p(·), the functions Ik have the following properties:

1. E(Ik) = πk,

2. V (Ik) = πk(1− πk),

3. Cov (Ik, Il) = πkl − πkπl, k 6= l

for all k, l ∈ U .

Proof : The proof relies on the fact that Ik is a Bernoulli variable of parameter πk. It results
immediately that E(Ik) = πk and V (Ik) = πk(1− πk). For the last point, we have,

Cov (Ik, Il) = E(IkIl)− E(Ik)E(Il) = πkl − πkπl.

Consequence 1 : If the design p(s) has a fixed size, then

1.
∑

U πk = n

2.
∑

k 6=l

∑
U πkl = n(n− 1)

3.
∑

l∈U ,l 6=k πkl.
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Proof Since we deal with a fixed sample size, E(ns) = n and V (ns) = 0 with ns =
∑

U Ik. It
results for (1) that E(ns) =

∑
U πk = n.

2)

V (ns) =
∑
U

V (Ik) +
∑∑

k 6=l

Cov (Ik, Il)

=
∑
U

πk(1− πk) +
∑∑

k 6=l

(πkl − πkπl)

=
∑
U

πk +
∑∑

k 6=l

πkl − (
∑
U

πk)2

= n(1− n) +
∑∑

k 6=l

πkl = 0

which implies that
∑∑

k 6=l πkl = n(n− 1).
3) We have ∑

l∈U ,l 6=k

πkl = E(Ik

∑
l∈U ,l 6=k

Il) = E(Ik(n− Ik))

= nE(Ik)− E(I2
k) = nπk − πk = (n− 1)πk

For the simplicity of notation, we introduce the ∆-quantities (Särndal et al 1992):

∆kl = πkl − πkπl

∆̌kl = ∆kl/πkl

for all k, l ∈ U .

We suppose from now on that πk > 0 for all k ∈ U , namely that each unit in the population has
a chance to be in the sample.

1.1 The Horvitz-Thompson estimator

We consider the class of linear estimators and among these estimators we take the one proposed
by Horvitz-Thompson (1952). This estimator is sometimes called the π estimator for the total
of Y because the probabilities of first degree appear in its formula:

t̂π =
∑

s

yk

πk
. (1.1)

We give now the most important result of this section.

Result 2 (Horvitz-Thompson 1952). The π estimator for the total of Y, t̂π, has the following
properties:

1. t̂π is unbiased for t =
∑

U yk.

2. The variance of t̂π has the expression :

V (t̂π) =
∑
U

∑
U

∆kl
yk

πk

yl

πl
.
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3. If πkl > 0 for all k&l ∈ U , an unbiased estimator for V (t̂π) is :

V̂ (t̂π) =
∑

s

∑
s

∆̌kl
yk

πk

yl

πl
.

Proof : The proof relies on the identities:

t̂π =
∑

s

yk

πk
=
∑
U

yk

πk
Ik

V̂ (t̂π) =
∑
U

∑
U

∆̌kl
yk

πk

yl

πl
IkIl

and on the fact that the membership indicators satisfy E(Ik) = πk and Cov(Ik, Il) = ∆kl for all
k, l ∈ U .

Remark 1 : The H-T estimator is the only unbiased homogeneous linear estimator whose
weights do not depend on the sample.

Remark 2 : The variance of t̂π can be written as a quadratic form as follows:

V (t̂π) = y∆y′

where ∆ = ( ∆kl
πkπl

)k,l∈U and y = (y1, . . . , yN ) the parameter vector.

For a sampling design of fixed size, ns = n, equivalent formulas can be deduced for the variance
and variance estimator of t̂π, as obtained by Yates and Grundy (1953) and Sen (1953).

Result 3 (Yates-Grundy-Sen 1953). If p(s) > 0 is of fixed size, then V (t̂π) and V̂ (t̂π) have the
equivalent expressions:

1. V (t̂π) = −1
2

∑∑
U

∆kl

(
yk

πk
− yl

πl

)2

.

2. If πkl > 0 for all k, l ∈ U ,

V̂ (t̂π) = −1
2

∑∑
s

∆̌kl

(
yk

πk
− yl

πl

)2

.

Proof : We use Consequence 1. More exactly,

V (t̂π) =
∑
U

∑
U

∆kl
yk

πk

yl

πl
−
∑∑

U
∆kl

y2
k

π2
k

=
∑
U

∑
U

∆kl
yk

πk

yl

πl

since
∑∑

U ∆kl
y2

k

π2
k

=
∑

U
y2

k

π2
k

∑
U ∆kl = 0 by Consequence 1.

Remark 3 The YGS variance estimator is not necessarily equal to the HT variance estimator.

Definition 1 The coefficient of variation of an estimator θ̂ is given by

cve(θ̂) =

√
V̂ (θ̂)

θ̂
.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Equal sampling designs

In this section we describe the properties of estimators of finite population totals,

ty =
∑
U

yk.

under equal sampling designs. In chapter 2-6, we place in the context of the fixed population
approach so the only randomness is the sampling design, p(·). As a result, the definitions of the
expectation, variance and mean square error of an estimator Q for ty can be formulated for a
given design p(s). For example,

E(Q) =
∑
s∈S

p(s)Q(s).

2.1 Sampling without replacement (SI)

We start with the simplest and most used sampling design, the simple random sampling with-
out replacement (SI). We select with equal probability a first element from the population; this
element will be kept away during the following selections. Next, we select with equal probabil-
ity another element among the N − 1 remaining units of the population and we continue the
selection in the same way until the sample has n elements. There are Cn

N samples of size n and

the sampling design has the following expression p(s) =
1(
N

n

) if the the sample s is of size

n and zero otherwise. The inclusion probabilities of first and second degree are πk =
n

N
and

πkl =
n(n− 1)
N(N − 1)

. The ∆-quantities are ∆kl = −f(1−f)
N−1 for any k 6= l and f = n/N.

There are several ways to implement a SI sampling. The one described above is called the
draw-sequential scheme. For a large population of elements stored sequentially, the following
list-sequential scheme is more recommended.

List-sequential schemes

1. We consider a uniform random variable ε ∼ Unif(0, 1) and take independent realizations
of it. The SI sample of size n is obtained as follows :

11



12 CHAPTER 2. EQUAL SAMPLING DESIGNS

(a) If ε1 < n/N then k = 1 is selected; otherwise not.

(b) We repeat the operation for k = 2, 3, . . . Let nk be the number of elements selected
after k − 1 steps. If εk < n−nk

N−k+1 then k is selected, otherwise not.
The procedure stops when nk = n.

This scheme proposed by Fan, Muller and Rezucha (1962) can be shown to conform to the
definition of the SI design. Nevertheless, this scheme requires that the population size is
known.

2. Yet another implementation of the SI design is by the following scheme which has the
advantage that it permits a simultaneous selection of several nonoverlapping SI samples.
The scheme proposes that N independent Unif(0,1) random numbers ε1, . . . , εN are first
drawn and then ordered according to size. Now, the n smallest ε-values correspond to the
sample.

From Result 2, we have :

Result 4 : Under a sampling SI, the π-estimator for the population total becomes

1. t̂π,SI = Nys =
1
f

∑
s

yk.

2. The variance has the expression VSI(t̂π) = N2 1− f

n
S2

yU .

3. An unbiased estimator of the variance is given by

V̂SI(t̂π) = N2 1− f

n
S2

ys,

where f =
n

N
,

S2
yU =

1
N − 1

∑
U

(yk − yU )2

with yU = N−1
∑

U yk and

S2
ys =

1
n− 1

∑
s

(yk − ys)
2,

for ys = n−1
∑

s yk.

Proof 2). The SI sampling is of fixed size, so we can use the Yates-Grundy-Sen variance formula

(result 3) with ∆kl = −f(1− f)
N − 1

for any k 6= l. We obtain

VSI(t̂π) =
1
2

f(1− f)
(N − 1)f2

∑
U

∑
U

(yk − yl)2

= N2 1− f

n
S2

yU

since
∑∑

U (yk − yl)2 = N(N − 1)S2
yU .

3). A similar derivation using the Yates-Grundy-Sen variance estimator gives V̂SI(t̂π) = N2 1− f

n
S2

ys.
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Remark 4 The ratio f = n/N is called the sampling rate and the difference 1− f the finite

population correction. We make this correction because with small populations the greater f,

the more information we have about the population and thus the smaller the variance. For most
samples from large populations, the finite population correction is approximately 1.

Remark 5 : For SI we have (∆k,l)k,l∈U = k(IN − P ) with k = f(1 − f)
N

N − 1
; IN is the

identity matrix with dimension N and P =
1
N

1N1′N . The variance has the expression VSI =
N

N − 1
1− f

f
y(IN − P )y′. As a consequence, det (∆k,l) = 0 and the variance will be minimized

for all vector y = c 1′N with c a real constant.

Remark 6 The mean yU =
∑

U yk/N with N known is estimated unbiasedly by dividing by N

the π-estimator of the population total from the above result,

ŷU =
∑

s

yk

n
= ys.

In this case, the π-estimator coincides with the sample mean which is the most used estimator
in classical inferential statistics. To obtain the variance and the variance estimator, we have
only to divide by N2 the corresponding expressions from result 4, namely

VSI(ŷU ) =
1− f

n
S2

yU , V̂SI(ŷU ) =
1− f

n
S2

ys.

Remark 7 Result 4 gives us that the variance V̂SI(t̂π) is not large if

1. the sample size n is large. For large populations, it is n and not the percentage of the
population sampled, that determines the precision of the estimator : a sample of size 100
from a population of size N = 100.000 has almost the same precision as a sample of size
100 from a 100 millions population units:

V (Nys) = N2 99.900
100.000

S2

100
=

S2

100
0.999 for N = 100.000

V (Nys) = N2 99.999.900
100.000.000

S2

100
=

S2

100
0.999999 for N = 100.000.000

2. the sampling rate f = n/N is large;

3. the variance S2
yU is little.

2.1.1 Estimation of a proportion

We are interested in estimating the proportion P of individuals from the finite population with
an attribute A using a SI sampling design. First of all, we write the proportion P as a finite
population mean of the variable Y defined as follows

yk =

{
1 if k has A
0 elsewhere
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We have P =
∑

U yk

N
estimated unbiasedly by

P̂SI =
∑

s yk

n

with variance
V (P̂SI) =

1− f

n
S2

yU , where S2
yU =

N

N − 1
P (1− P )

estimated unbiasedly by

V̂ (P̂SI) =
1− f

n
S2

ys, where S2
ys =

n

n− 1
P̂SI(1− P̂SI).

Let us prove that S2
yU = N

N−1P (1− P ). We have

S2
yU =

1
N − 1

∑
U

(yk − yU )2 =
1

N − 1

∑
U

(y2
k − 2Pyk + P 2)

=
1

N − 1
(
∑
U

yk − 2P
∑
U

yk + NP 2) =
N

N − 1
P (1− P ).

We prove in the same way the formula for S2
ys. When N/(N − 1) ' 1, V (P̂SI) ' 1−f

n P (1− P ).

Confidence interval for the finite population total, mean and proportion

Hajek (1960) proves a central limit theorem for simple random sampling without replacement.
Under certain technical conditions,we have

ys − yU√
1−f

n SyU

∼ N (0, 1).

A large-sample 100(1− α)% confidence interval for the population mean is

[ys − zα/2

√
1− f

n
SyU , ys + zα/2

√
1− f

n
SyU ]

where zα/2 is the (1 − α/2)th percentile of the standard normal distribution. Usually, SyU is
unknown and is replaced with the sample estimate Sys. If n/N ' 0, the confidence interval is
the same as the one used in inferential statistics.
One can remark that the length of the above confidence interval is a multiple of n−1/2 so, for fixed
variance, large sample sizes entails smaller confidence interval. We can see possible consequences
of different sample sizes. Figure () shows the value of 1.96 · s/

√
n for a range of sample sizes

between 50 and 700 and for two possibles values of the standard deviation s, s = 500000 and
s = 700000. The plot shows that if we ignore the finite population correction and s = 500000, a
sample of size 300 will give a margin of error of about 60000.

Computation of minimal sample size for having a given precision

We consider the case of a proportion P. Under the normality assumption, the confidence interval
for the proportion P is

ICα(P ) = [P̂SI − zα/2

√
V (P̂SI), P̂SI + zα/2

√
V (P̂SI)].
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We want to find the minimal sample size n such that P should be estimated with a given
precision e, namely

zα/2

√
V (P̂SI) ≤ e

and since V (P̂SI) = 1−f
n S2

yU , we obtain

n ≥
z2
α/2S

2
yU

e2 +
z2
α/2

S2
yU

N

. (2.1)

The problem with the above formula is that S2
yU =

N

N − 1
P (1 − P ) is not known. To solve it,

we have two possibilities:

1. we have not any information about the proportion P. In this case, we take the worst
situation P = 1/2 since P (1− P ) has a maximum at P = 1/2. We obtain

n ≥
z2
α/2N

z2
α/2 + 4e2(N − 1)

.

If N large, the sampling rate is approximately zero and N/(N − 1) ' 1. Then,

n ≥
z2
α/2

4e2

Example (Lohr, 1999): Suppose we want to estimate the proportion of recipes in the Better
Homes & Gardens New Cook Book that do not involve animal products. We plan to take an SI
sample of the N = 1251 test kitchen-tested recipes and we want a 95% CI with margin of error
0.03.
If we ignore the finite population correction, we obtain

n ≥ n0 =
1.962 1

2
1
2

0.032
' 1068

which is extremely large comparing with N. On the contrary situation, we obtain

n ≥ n0

1 + n0/N
' 577

2 we have an estimation P̂ . This estimation may have been obtained from a pilot sample,
namely a small sample taken to provide information and guidance for the design of the
main survey. Previous studies or surveys can also provide information about P.

We replace in (2.1) S2
yU with S2

ys =
n

n− 1
P̂ (1− P̂ ) and we obtain

n ≥
e2 + z2

α/2P̂ (1− P̂ )

e2 +
z2
α/2

P̂ (1−P̂ )

N

.

If N is large,
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2.1.2 The design effect

The design effect is the ratio between the variance of the π-estimator Nys under the SI sampling
and the variance of the π-estimator under another sampling procedure p(·),

deff(p, t̂π) =
Vp(t̂π)

VSI(Nys)
. (2.2)

This ratio expresses how well the strategy (p, t̂π) conducts in comparison with (SI,Nys). When
deff(p, t̂π) > 1, precision is lost by not using the SI design and in the contrary case, precision is
gained compared to SI design.

2.1.3 SI with SAS

A SI sample can be obtained using PROC SURVEYSELECT with the option METHOD=SRS.
One may use SAMPSIZE=n to specify the sample size SAMPRATE=n/N to specify the sam-
pling fraction. The file of ”sorties” gives information about the sampled individuals and the
first-order inclusion probabilities. One example is given below.

/* Plan de sondage simple */

title1 ’Logement Hte Gne (rec99) : plan simple’;

proc surveyselect data=sondage.rec99htegne method=srs n=70 stats

seed=47279 out=sondage.logsi1;

run;

One estimation of the finite population total can be obtained using PROC SURVEYMEANS
with option SUM. If the finite population correction factor is desired, one can use TOTAL= or
RATE= options.

title1 ’Logement Hte Gne (rec99)’;

title2 ’Total estim log vacants Plan SI’;

proc surveymeans data=sondage.logsi1 total=554 sum varsum cvsum clsum;

var logvac;

weight Samplingweight;

ods output Statistics = sondage.rlog99;

run;

SI with R

In order to get a simple random sampling without replacement, one may use the R function
SAMPLE(N,n) which returns the vector of sampled individuals. The package Sampling contains
the function SRSWR(n,N) which returns a 0,1 vector of size N.

rec99<-read.csv("C:/Documents and Settings/Administrateur/Bureau/cours_sondages_Besancon/programes_tp3/rec99.csv")

library(sampling)

#slection de 70 individus parmi 554

si.rec99<-srswor(70,554)

t_ht<-554*mean(rec99$LOGVAC[which(si.rec99==1)])
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2.2 Bernoulli sampling (BE)

In this case the sample is composed of all elements k from U which satisfy εk < π, where εk

for all k ∈ U are independent realizations of a random variable with uniform distribution in the
interval (0, 1) and 0 < π < 1 is a fixed constant. As a result all the units from the population
have the same probability of inclusion of first degree, πk = π for all k ∈ U . Besides, the selection
of the unit k is made independently from the selection of unit l with l 6= k; as a consequence,
πkl = π2 for all k 6= l ∈ U and ∆kl = 0 for all k 6= l ∈ U . Then, the variance-covariance matrix
has the expression ∆ = diagπ(1−π). In BE sampling, the sample membership indicators Ik are
independent.
We have 2N possible samples and the probability of selecting one is

p(s) = πns(1− π)N−ns

where ns is the sample size. In BE sampling, the sample size is a binomially distributed random
variable with parameters N and π, ns ∼ B(N,π).

Example :

Result 5 : Under a BE sampling, the π-estimator for the population total ty can be written

1. t̂π,BE =
1
π

∑
s

yk;

2. The variance has the expression VBE(t̂π) =
(

1
π
− 1
)∑

U
y2

k.

3. An unbiased estimator of the variance is given by

V̂BE(t̂π) =
1
π

(
1
π
− 1
)∑

s

y2
k.

Proof 1) t̂π,BE =
∑

s

yk

πk
=

1
π

∑
s

yk.

2) We have ∆kl = 0 for k 6= l and π(1− π) for k = l. So,

VBE(t̂π) =
∑
U

∑
U

∆kly̌ky̌l =
∑
U

π(1− π)
y2

k

π2
=
(

1
π
− 1
)∑

U

y2
k.

3) V̂BE(t̂π) =
∑

s

∑
s

∆̌kly̌ky̌l =
∑
U

π(1− π)
y2

k

π2
=

1
π

(
1
π
− 1
)∑

s

y2
k.

The π estimator in the case of Bernoulli sampling is often inefficient because of the variable
sample size. Nevertheless, the Bernoulli sampling conditioned to the sample size ns is a SI
sample. That’s why, once selected the BE sample, we can consider the conditional frame.
Although designs with fixed size are desired, there are situations in which variable sample size
conducts better or it can not be avoided. Two examples are relevant. The first one is the
selection in a domain of a finite population, situation not treated here and the second one is
the selection in the presence of nonresponse. In this case, the response behaviour in different
population subgroups is often modeled as a BE sample selection.
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Table 2.1: Population and samples

Sample Elements of sample:
s1 1, a + 1, 2a + 1, · · · (n− 1)a + 1
· · · · · ·
sr r, a + r, 2a + r, · · · (n− 1)a + r

· · · · · ·
sa a, 2a, 3a, · · · na = N

2.2.1 BE sampling with SAS and R

2.3 Systematic sampling (SY)

The systematic sampling is very easy to implement and it is used when no list of population
exists or when the list is in roughly random order.
To select a SY sample of size n, we determine a as being the ratio N/n supposed to be integer
(the contrary situation will be treated in next section). The quantity a is called the sampling
interval. Next, we choose at random and with equal probability a first element r between the
first a elements in the population list; r is called random start. The sample will be composed of
the ath element from the population list,

sr = {k : k = r + (j − 1)a ≤ N, j = 1, . . . , n}

For example (Lohr, 1999), to select a sample of 45 students from a list of 45 000 students at
Arizona State University, the sampling interval a is 1000. Suppose the random integer we choose
is 597. Then the students numbered 597, 1597, ..., 44 597 would be in the sample.
There are situations when it is more appropriate to choose the sampling interval and not the
sample size. This happens when the population size is not known and the SY sampling is very
useful in such situations. The resulting sample will be of random size. Let us consider an ex-
ample.

Systematic sample is much compared with a SI sample. There are situations when it behaves
like a SI sample and other when it does not. If the population is in random order, than SY
sampling will be much like an SI sample.
Systematic sampling does not necessarily give a representative sample if the listing of population
units is in some periodic or cyclical order. If male and female names alternate in the list and a

is even, the SY sample will contain either all man or all women. In this case, the sample will
not behave as a SI sample.
On the other hand, some populations are in increasing or decreasing order. A SY sample from a
population of accounts ordered will contain some large amounts and some small amounts. With
a SI sample, we may have only small or only large amounts which is not very desirable.

The set of all possible samples SSY = {s1, . . . , sa} consists of the a different and non-overlapping
sets corresponding to the a possible random starts. This is represented in the table (2.1):
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The probability of selecting s ∈ SSY is

p(s) = 1/a if s ∈ SSY and zero elsewhere.

The probability of first degree is
πk = 1/a, k ∈ U

and of second degree,

πkl = 1/a if k 6= l ∈ s and zero otherwise

So, the condition that πkl > 0 for all k, l it is not satisfied which means that we can not determine
the Horvitz-Thompson variance estimate.
We have U = ∪a

r=1sr and the finite population total of Y may be written as

ty =
∑
U

yk =
a∑

r=1

tsr

with tsr =
∑

sr
yk.

Result 6 For a SY sampling, the π-estimator is

1. t̂π = ats for s ∈ SSY .

2. The variance of t̂π is VSY (t̂π) = a
∑a

r=1(tsr − t)2 with t =
∑a

r=1 tsr/a.

Proof 1) We have πk = 1/a and t̂π =
∑

s
yk
πk

= ats.

2) The ∆kl =
1
a
− 1

a2
if k 6= l ∈ s and ∆kl = − 1

a2 otherwise.

VSY (t̂π) =
∑
U

∑
U

πkl − πkπl

πkπl
ykyl =

∑
U

∑
U

πkl

πkπl
ykyl −

(∑
U

yk

)2

= a

a∑
r=1

∑
sr

∑
sr

ykyl − t2

= a
a∑

r=1

(∑
sr

yk

)2

− t2 = a
a∑

r=1

(tsr − t)2.

2.3.1 Controlling the sample size

The fractional interval method

Let a = N/n where n is the desired sample size.

1. Draw a random number ξ from the uniform distribution on the interval (0, a).

2. The sample will consist of elements k for which

k − 1 < ξ + (j − 1)a ≤ k, j = 1, 2, . . . , n
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Any element k has the probability πk = 1/a = n/N to be chosen and every possible sample is
of size n.

Circular Systematic Sampling Method

The frame is laid out circularly : the last element is followed by the first and so on.

1. Draw a random number r between 1 and N with equal probability.

2. The sample will consist of elements k for which, for j = 1, . . . , n we have

k = r + (j − 1)a if r + (j − 1)a ≤ N

or
k = r + (j − 1)a−N if r + (j − 1)a > N

Any element k has the probability πk = 1/a = n/N to be chosen and every possible sample is
of size n.

2.3.2 The efficiency of systematic sampling

One can remark that the variance

VSY (t̂π) = a

a∑
r=1

(tsr − t)2

is zero if all the finite population totals are the same, tsr = t. So, the efficiency of the SY sampling
depends on the particular ordering of the N elements on which the systematic selection is applied.
We study in the next the efficiency of the SY sampling as a function of the population ordering.
We recall that we consider the case N = a · n. Then, t̂π = N

∑
sr

yk/n = Nysr
with variance

VSY (t̂π) = N2 1
a

a∑
r=1

(ysr
− yU )2

with ysr
=
∑

sr
yk/n. Consider the ANOVA decomposition:

∑
U

(yk − yU )2︸ ︷︷ ︸
SST

=
a∑

r=1

∑
sr

(yk − ysr
)2︸ ︷︷ ︸

SSW

+
a∑

r=1

n(ysr
− yU )2︸ ︷︷ ︸

SSB

which means that the total variation (SST) is the sum of the variation within systematic samples
(SSW) and the variation between systematic samples (SSB). The total variation is fixed and
SSB determines the variance under SY sampling,

VSY (t̂π) = N · SSB.

In other words, the more homogeneous the elements within systematic samples are, the less
efficient the SY sampling is. Homogeneous is used here to connote the tendency to have equal
y-values. Thus, to achieve a favorable population ordering for SY sampling, we should strive
for an ordering that entails a low degree of homogeneity among the elements within the same
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systematic sample.
We discuss two measures of homogeneity.
1. We define the intraclass correlation coefficient ρ,

ρ = 1− n

n− 1
SSW

SST

• ρ > 0 if the elements from the same sample tend to have similar y-values.
• ρ = 1 if SSW = 0 or complete homogeneity,
• ρ = −1/(n− 1) if SSB = 0 or complete heterogeneity.

2. The second homogeneity measure is defined as follows

δ = 1− N − 1
N − a

SSW

SST

The advantage with δ is that it can be used when the systematic samples are not of equal sizes.
The extreme values of δ are

δmin = − a− 1
N − a

for SSB = 0 and δmax = 1 which occurs if SSW = 0 or complete heterogeneity.

Comparison with SI sampling

We have

deff =
VSY (t̂π)
VSI(t̂π)

' 1 + (n− 1)ρ.

Then,
• if ρ ' 1 we have deff ' n and SY is less efficient that SI;
• if ρ = 0 then deff ' 1 and SY =SI;
• if ρ < 0 then SY is more efficient than SI.

2.3.3 Variance estimation

There is no unbiased estimator of the variance VSY (t̂π). Several biased variance estimators have
been proposed in the literature. We give below one.
Under the assumption that SY sampling is close to SI sampling, one can use as variance estimator

V̂ (t̂π) =
N2(1− f)

n
S2

ysr

with S2
ysr

=
1

n− 1

∑
sr

(yk − ysr
)2 if sr is the selected sample.

2.3.4 Implementation of SY sampling in SAS and R
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Chapter 3

Stratified sampling

In stratified sampling, the population U = {1, . . . , k, . . . , N} is divided into H subpopulations
denoted Uh of size Nh for h = 1, . . . ,H such that Uh ∩ Uh′ = φ for h 6= h′.

U = {1, . . . , k, . . . , N} =
H⋃

h=1

Uh

|U | = N, |Uh| = Nh, N =
H∑

h=1

Nh

From each subpopulation Uh, h = 1, . . . ,H we select a sample sh, sh ⊂ Uh, of size nh according to
a sample design ph(·). The selection in each subpopulation is made independently. The resulting
sample s is :

s = s1 ∪ s2 ∪ . . . ∪ sH

|sh| = nh ⇒ |s| =
H∑

h=1

nh.

Then the probability of selecting s is:

p(s) = p1(s1) . . . pH(sH).

Let πh
k for k ∈ U and πh

kl for k 6= l ∈ U be the first and second order inclusion probabilities
according to ph, h = 1, . . . ,H. Then, πk, the first order inclusion probability according to p(·),
is equal to πh

k if k ∈ sh and πkl, the second order inclusion probability according to p(·), is equal
to πh

kπh′
l if k, l belong to different strata h, h′ and equal to πh

kl if k, l belong to the same stratum
h.

We suppose that Nh is known for all h = 1, . . . ,H. The population total can be written as:

ty =
∑
U

yk =
H∑

h=1

th =
H∑

h=1

NhyUh

where th =
∑

Uh
yk is the total of the stratum h and yUh

= 1
Nh

th is the mean of the stratum h.

We can formulate the following result for the π-estimator in the case of stratified sampling:

Result 7 : Under a stratified sampling design, the π-estimator for the total of the population
is:

23
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1. t̂π =
∑H

h=1 t̂hπ where t̂hπ is the π-estimator for the stratum h.

2. The variance has the expression V (t̂π) =
∑H

h=1 Vh(t̂hπ), where Vh(t̂hπ) is the variance of
t̂hπ for all h.

3. An unbiased variance estimator is given by V̂ (t̂π) =
∑H

h=1 V̂h(t̂hπ), where V̂h(t̂hπ) is the
variance estimator for Vh for all h.

The selection of the sample sh can be done differently or in the same way in all strata. For
example, we can choose all sh by sampling without replacement or by Bernoulli sampling. In
each case, formulas for variance and for an estimation for variance can be obtained using the
results derived for the designs SI, BE.

Stratified sampling with SI in each strata (STSI)

For stratified sampling with sampling without replacement in each stratum, we obtain:

1. t̂π =
H∑

h=1

Nh

(∑
sh

yh

nh

)
.

2. The variance of the π-estimator is

V (t̂π) =
H∑

h=1

N2
h

1− fh

nh
S2

yUh
(3.1)

where S2
yUh

=
1

Nh − 1

∑
Uh

(yk − yUh
)2 is the stratum variance and fh = nh

Nh
the sampling

fraction in stratum h.

3. V̂ (t̂π) =
H∑

h=1

N2
h

1− fh

nh
S2

ysh
where S2

ysh
=

1
nh − 1

∑
sh

(yk − ysh
)2 is the sample variance in

stratum h.

Choice of strata

3.0.5 Optimal sample allocation under STSI sampling

Consider a population with fixed strata and we want to determine the sample sizes nh, h =
1, . . . ,H which minimize the variance V (t̂π) for a fixed cost

C = c0 +
H∑

h=1

nhch (3.2)

where c0 is a fixed overhead cost and ch is the cost of surveying one element in stratum h.

Result 8 Consider the STSI sampling. Minimizing the variance V (t̂π) for a fixed cost C gives
the solution

nh =
(C − c0)NhSyUh

/(ch)1/2∑H
h=1 NhSyUh

(ch)1/2
, h = 1, . . . ,H
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and the minimum variance is

Vopt =
1

C − c0

[
H∑

h=1

NhSyUh
c
1/2
h

]2

−
H∑

h=1

NhS2
yUh

Proof We have

V (t̂π) =
H∑

h=1

N2
h

1− fh

nh
S2

yUh
=

H∑
h=1

N2
hS2

yUh

nh
−

H∑
h=1

NhS2
yUh

=
H∑

h=1

Ah

nh
+ B

with Ah = N2
hS2

yUh
and B = −

∑H
h=1 NhS2

yUh
. Then, minimizing the variance under a cost

constraint is equivalent to minimizing the product(
H∑

h=1

Ah

nh

)
(C − c0).

Using the Cauchy inequality, we have that the above product is always superior to
(∑H

h=1(Ahch)1/2
)2

with equality for
nh ∝ (Ah/ch)1/2.

Using relation (3.2), we obtain that

nh = (C − c0)

√
Ah
ch∑H

h=1(Ahch)1/2
.

Next, we replace Ah by N2
hS2

yUh
and we obtain the desired relation.

We consider in the next that all ch are equal and let n be the total sample size, so that

n =
H∑

h=1

nh

Optimum allocation

The optimum allocation is obtained from result 8 with ch constant. It results

nh = n
NhSyUh∑H

h=1 NhSyUh

(3.3)

which gives the optimal variance

VSTSI,o(t̂π) =
N2

n

(
H∑

h=1

WhSyUh

)2

−N

H∑
h=1

WhS2
yUh

. (3.4)

This result is also called the Neyman allocation. For deriving the above nh, one needs the
standard deviations SyUh

which are unknown. As a consequence, this result can not be used
in practice. But in repeated surveys, one may be able to use past experience to state close
approximations to the true SyUh

.

We can see that nh is proportional to SyUh
which means that the sample size will be larger if

the variation of Y is larger in the stratum h.
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x-optimal allocation

Suppose that X is an auxiliary information available highly correlated with Y and that we know
SxUh

for every h = 1, . . . ,H. The x-optimal allocation is given by

nh = n
NhSxUh∑H

h=1 NhSxUh

(3.5)

If the relation between X and Y is perfectly linear, than the x-optimal allocation is in fact
optimal.

Proportional allocation

The proportional allocation is defined by

nh = n
Nh

N
(3.6)

Remark that if SyUh
are all equal, then the proportional allocation is optimal.

The variance of the π-estimator and the proportional allocation is equal to

VSTSI,p(t̂π) = N2

(
1
n
− 1

N

) H∑
h=1

WhS2
y,Uh

. (3.7)

This formula can be obtained by using the variance formula (3.1), relation (3.6) and the fact
that Wh = Nh/N.

Allocation proportional to the y-total

Allocation proportional to the y-total is defined as follows

nh = n

∑
Uh

yk∑
U yk

(3.8)

which can not be used in practice since the stratum y-totals are unknown.

Allocation proportional to the x-total

Allocation proportional to the x-total is defined by

nh = n

∑
Uh

xk∑
U xk

(3.9)

3.0.6 Comparison between SI and STSI

We use the ANOVA decomposition :

(N − 1)S2
yU =

H∑
h=1

Nh(yUh
− yU )2 +

H∑
h=1

(Nh − 1)S2
yUh

or
SST = SSB + SSW

3.0.7 Implementation of stratified sampling with R and SAS



Chapter 4

Unequal probabilities sampling

designs

Up to now, we have only discussed equal sampling designs, namely the probabilities of selecting
the sampling units are equal. Equal probabilities give schemes that are often easy to design,
explain and implement. Such designs are not, however, always possible or, if practicable, as
efficient as schemes using unequal probabilities. An intermediate case is the stratified sampling
where the units from different strata have different probabilities to be chosen while units from
the same strata have equal selection probabilities. We have seen at the time that the stratified
sampling design reduced the variance of the Horvitz-Thompson estimator of the population total
if the strata were very homogeneous with respect to the interest variable or with respect to an
auxiliary variable roughly correlated to the study variable. An optimal allocation scheme would
sample a very high fraction (perhaps 100%) in strata with high variability and small fraction
in strata with little variability. Stratified sampling design is a particular case of sampling with
unequal probabilities of selection.

4.1 Poisson sampling (PO)

The BE sampling is not a fixed size design. Another example is the Poisson sampling (PO)
when the selection of an element is decided by εk < πk where {π1, . . . , πn} is a set of fixed
constants between 0 and 1. We give the first and second order inclusion probabilities. Based on
the same arguments as in the case of BE sampling, we have that πk for all k ∈ U are the set
of first order inclusion probabilities; as for the second degree inclusion probabilities, we have for
k 6= l ∈ U , πkl = πkπl. Because of these particular expressions of the inclusion probabilities, the
Result 2 will become:

Result 9 : Under a PO sampling, the π-estimator for the population total has the following
expression:

1. t̂π,PO =
∑

s

yk

πk
.

2. The variance is given by VPO(t̂π) =
∑
U

πk(1− πk)y̌2
k =

∑
U

(1− πk)
πk

y2
k.

3. An unbiased variance estimator is V̂PO(t̂π) =
∑

s

(1− πk)y̌2
k.

27
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As in the case of BE sampling, the PO sampling is of variable sample size ns, fact which entails
a great value of VPO(t̂π). By conditioning, we may remove this drawback. Hajek (1981) proves
that every conditional PO sampling maximizes the entropy in the class of designs having the
same first degree inclusion probability and taking part to the same class Ω of samples satisfying∑

s∈Ω p(s) = 1. The entropy is a measure of spread of the sample design defined by

e = −
∑

s

p(s) ln p(s).

The main role of PO sampling is to help to define and analyse other sampling method (Hajek
1981). By conditioning, we can obtain SI sampling, two-stage sampling described in sections
2.2 and 2.9, etc.

In the case of a BE sampling we have:

EBE(ns) = Nπ and πk = π for all k = 1, . . . , N.

Thus, if we fix the expected sample size and we suppose that N is known, then πk for k = 1, . . . , N

are completely specified. In PO sampling, we do not have the same thing:

EPO(ns) =
N∑

k=1

πk.

Thus, for fixed EPO(ns) we have to make a choice for πk. We will choose the πk that minimize
the variance. We get the following expression for the first order inclusion probabilities:

πk =
nyk∑
U yk

for all k = 1, . . . , N

assuming that yk <

∑
U yk

n
for all k = 1, . . . , N. Because the expression of πk requires yk for all

k = 1, . . . , N which in general are unknown, the inclusion probabilities so obtained can not be
used. But, if we have auxiliary information X which takes the value xk for the k-th element of
the population and the variable of interest Y is approximately proportional to X , then we can
consider:

πk =
nxk∑
U yk

for all k = 1, . . . , N

and

xk <

∑
U xk

n
for all k = 1, . . . , N.

The inclusion probabilities πk given by these expressions are called probability proportional to
size. If Y is proportional to X , then the associated π-estimator t̂π,PO has a small variance.
This discussion states a more general problem: how we can use available auxiliary information
at the sampling stage? One possibility is selecting units with unequal probabilities, such as
probability proportional to size described above. We will describe briefly in the next subsection
the most important methods of units selection with unequal probabilities. Till (2006) gives a
detailed description of these methods as well as the associated algorithms.
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4.2 πps estimator

We need auxiliary information X for selecting unequal probabilities sampling designs. The
derivation of first order inclusion probabilities of a fixed size design is the first step of all the
methods. Conditions on the second order inclusion probabilities are formulated, fact which
makes possible the resolution of this problem. Hanif & Brewer (1980) and Brewer & Hanif
(1983) present all the existing methods for selecting unequal probabilities sampling designs until
that moment.
We can have designs with or without replacement. We start with the study of the πps sampling
design when πk ∝ xk for all k in the population, called πps sampling. In this case, several
schemes for selecting elements such that πk ∝ xk have been proposed. All these schemes have
been devised in order to accomplish the following five requests (Särndal et al. 1992):

1. The selection of the sample is simple;

2. the πk are strictly proportional to xk for all k = 1, . . . , N ;

3. πkl > 0 for all k 6= l;

4. the πkl can be computed simply;

5. ∆kl = πkl − πkπl < 0 for all k 6= l to guarantee that the Yates-Grundy variance estimator
is nonnegative.

Let n be the sample size. We will study different schemes depending on the values of n.
For n = 1, we have the total cumulative method which is strictly a πps design, but πkl = 0

for all k 6= l so an unbiased variance estimator can not be obtained.
For n = 2, we mention only the design proposed by Brewer (1963, 1975) which ensures

πk = 2xkP
U xk

for k = 1, . . . , N and πkl > 0 for all k 6= l. This scheme satisfies also the condition
that ∆kl < 0 for all k 6= l that allows the Yates-Grundy variance estimator to be always
nonnegative. So, all the above requirements are satisfied.

For n > 2, several schemes exit, most of them are complicated because of the requirement
that πk must be proportional to xk for all k ∈ U . If we relax this condition, Sunter (1977)
proposes a schema which gives πk strictly proportional to xk except for a small portion of the
population, corresponding to the smallest values of xk. We have also πkl > 0 and ∆kl < 0 for
k 6= l. Sunter (1986) presents a list-sequential scheme which achieves a strictly proportionality
between πk and xk. Madow (1949) proposes a systematic unequal probabilities sampling design,
which is one of the best because of its simplicity.

The method of Rao, Hartley and Cochran (1962) gives an unbiased estimator for the popu-
lation mean and at the same time a variance estimator.

4.2.1 Pwr sampling

For sampling with replacement, denoted by SIR, Hansen and Hurwitz (1943) proposed the pwr
estimator: p-expanded with replacement, corresponding to a generalization of simple random
sampling with replacement. The method consists in drawing with replacement m different
elements with unequal probabilities p1, . . . , pk, . . . , pN retaining the independence of the draws.

Pr(selecting k) = pk for k = 1, . . . , N.
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Then the sets of {pk}k∈U satisfy the properties :

1. pk > 0 for all k ∈ U

2.
∑

U pk = 1

The proposed pwr estimator for the total ty is:

t̂pwr =
1
m

m∑
i=1

yki

pki

We have the following result for the pwr estimator:

Result 10 :

1. The variance of t̂pwr is :

V (t̂pwr) =
V1

m
where V1 =

∑
U

(
yk

pk
− t

)2

pk;

2. An unbiased estimator for V (t̂pwr) is:

V̂ (t̂pwr) =
V̂1

m
; V̂1 =

1
m− 1

m∑
i=1

(
yki

pki

− t̂pwr

)2

.

Proof

One can see from above that the variance of the pwr-estimator is zero if the study variable
is proportional to p-values, namely

yk/pk = c, for all k = 1, . . . , N

where c is a constant. Unfortunately, this proportionality can not be attained. A solution is to
take

pk ∝ xk

where xk is an auxiliary variable value roughly proportional to yk. We obtain then

pk =
xk∑
U xk

, for kk = 1, . . . , N.

If we want to select only one element, the cumulative method can be used, otherwise we repeat
the cumulative method m times independently. We start with pk = xkP

U xk
, k ∈ U and let vk be

defined as follows:

v0 = 0 and vk =
k∑

l=1

pl for k = 1, . . . , N.

Then we generate u an Unif(0, 1) variable and the selection or not selection of the element k

will be decided as follows: the element k is selected if vk−1 ≤ u < vk. We repeat this operation
m times until the sample s is obtained.

P ( element k is selected ) = P (vk−1 ≤ u < vk) = vk − vk−1 = pk
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and t̂yHH =
1
m

m∑
i=1

yki

pki

with the same variance and estimate variance as t̂pwr deduced above. As it

can be noticed, the expressions for V (t̂pwr) and V̂ (t̂pwr) are simpler than the corresponding ones
if we had used the π-estimator, when the cross-products ∆̌kly̌ky̌l must be computed. However,
t̂pwr is less efficient than the π estimator. The following strategy gives an estimator for the
variance that combines the two estimators:

1. a fixed size m πps sampling design is used such that πk = mpk =
mxk∑
U xk

;

2. the π-estimator is used to estimate the population total ty;

3. the variance of the π-estimator is estimated by the pps-sampling formula:

V̂ =
1

m(m− 1)

∑
s

(
yk

pk
− 1

m

∑
s

yk

pk

)2

The variance estimator V̂ will not be unbiased for V (t̂π).

The R and SAS
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Chapter 5

Multi-stage sampling

All of the designs presented before suppose that direct element sampling is possible, namely
there is a sampling frame describing rigorously the target population and one can use it to se-
lect the sample. But in practice, it is very often that we do not possess such a sampling frame or
it could be too expensive to have one. Secondly, the population could be spread over a wide area
entailing very high travel expenses for the personal interviewers. How can we select a sample in
such situations? A variety of sampling designs are available for surveys in which direct element
sampling is impossible or impractical. One possibility is to have a multistage sampling which
consists in several stages of sampling (three, four stages) and the last-stage sampling is one of
direct elements. Let consider an example.

Example (Särndal et al., 1992) : The Swedish Board of Education sponsors annual surveys in
Sweden to measure drug among ninth-grade students. In this survey, data on drug use is col-
lected through anonymous questionnaires from every student in a sample of ninth-grade classes.
The sampling frame consists of a list of all ninth-grade classes. This is an example of cluster
sampling or one-stage sampling.
Alternatively, we could select a sample of schools and for each selected school, a sample of ninth-
grade classes is drawn next. Finally, a sample of students is selected in each sampled ninth-grade
classes. We have three-stage sampling.

We are interested in this chapter with the estimation of the finite population total ty knowing
that the finite population size N is unknown. As a consequence, the mean y is a non-linear
parameter being the ratio between two unknown totals.

1. The population U = {1, . . . , k, . . . , N} is now partitioned into NI primary sampling units
called PSUs, U1, . . . ,Ui, . . . ,UNI

of size |Ui| = Ni for i = 1, . . . , NI with Ni often unknown.
For simplicity, we note:

UI = {1, . . . , i, . . . , NI}.

In the first stage a sample sI , sI ⊂ UI of PSUs is drawn according to a sampling design pI(·).

2. For each i ∈ UI , Ui is partitioned into NIIi secondary sampling units, SSUs, Ui1, . . . ,Uiq, . . . ,UiNIIi

33
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symbolically represented by

UIIi = {1, . . . , q, . . . , NIIi}.

In the second stage, for each i ∈ sI , a sample sIIi is selected from UIIi according to a
sampling design pIIi(·).

3. We repeat the two previous steps until the r-th stage when the r-th sampling units are
the population elements.

The general procedure will be referred to the r − 1 subsequent stages. We suppose that we
have invariance and independence with respect to the r − 1 stages of selection.
In multi-stage sampling we have the inclusion probabilities according to the first stage:

πIi, πIij , for i 6= j and i, j ∈ sI

∆Iij = πIij − πIiπIj , ∆̌Iij =
∆Iij

πIij
.

Let ty be the population total:
ty =

∑
U

yk =
∑
UI

ti;

where ti =
∑

Ui
yk is the total of Ui. We assume that we can build the π-estimator t̂iπ for ti

with respect to the last r − 1 stages of selection, E(t̂iπ|sI) = ti, and let Vi = V (t̂iπ|sI) be the
variance of t̂iπ; let V̂i be an unbiased estimator of Vi, given sI , namely E(V̂i|sI) = Vi. With
these notations, we can give the result for the π-estimator for the population total and also the
expressions for the variance and variance estimator in multi-stage sampling.

Result 11 In r-stage sampling, r ≥ 2, we have:

1. the estimator t̂π =
∑
sI

t̂iπ
πIi

is unbiased for ty;

2. the variance of t̂π is V (t̂π) =
∑
UI

∑
UI

∆Iij ťiťj +
∑
UI

Vi

πIi
;

3. an unbiased variance estimator is V̂ (t̂π) =
∑
sI

∑
sI

∆̌Iij
t̂iπ
πIi

t̂jπ
πIj

+
∑
sI

V̂i

πIi
.

Proof : 1.

E(t̂π) = EIE(t̂π|sI) = EI

(∑
sI

1
πIi

E(t̂iπ|sI)

)
= EI

(∑
sI

ti
πIi

)
=
∑
UI

ti = t.

2.

V (t̂π) = VI{E(t̂π|sI)}+ EI{V (t̂π|sI)} = VI

{∑
sI

ti
πIi

}
+ EI

{∑
sI

Vi

π2
Ii

}

=
∑
UI

∑
UI

∆Iij ťiťj +
∑
UI

Vi

πIi
.
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3.

E(V̂ (t̂π)) = EIE(V̂ (t̂π)|sI) = EI

{∑
sI

∑
sI

∆̌Iij ťiťj +
∑
sI

(1− πIi)
Vi

π2
Ii

+
∑
sI

Vi

πIi

}

=
∑
UI

∑
UI

∆Iij ťiťj +
∑
UI

Vi

πIi
= V (t̂).

For r = 2, we obtain a two-stage sampling and for r = 3 a three-stage. From the general result,
we can derive formulas for the variance and variance estimator in the particular case of two-stage
sampling.

5.1 Two-stage sampling

5.1.1 Description

In this case, the second stage will consist in selecting for every i ∈ sI , a sample si of elements
from Ui, si ⊂ Ui according to a design pi(.|sI). Let πk|i, πk,l|i be the first and second order
inclusion probabilities with respect to the second stage sampling, pi(·|sI).
Using the invariance and independence properties, one can deduce the final inclusion probabili-
ties πk and πkl,

πk = πIiπk|i if k ∈ Ui

πkl =


πIiπk|i if k = l ∈ Ui

πIiπkl|i if k 6= l ∈ Ui

πIijπk|iπl|j if k ∈ Ui and l ∈ Uj , i 6= j

The resulting sample is
s =

⋃
i∈sI

si.

We suppose that we have invariance and independence with respect to the second stage of
selection. For every i ∈ sI let ni be the size of si, then the size of s is:

ns =
∑
i∈sI

ni.

We construct the unbiased estimator t̂iπ of ti with respect to the second stage; it results then
the expression for t̂iπ :

t̂iπ =
∑
si

yk

πk|i

From the general result for multi-stage sampling, we have the π-estimator for the total of the
population, ty =

∑
U yk of the form:

t̂π =
∑
i∈sI

t̂iπ
πIi

=
∑
i∈sI

1
πIi

∑
k∈si

yk

πk|i


with the variance :

V (t̂π) = VPSU + VSSU
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where VPSU =
∑
UI

∑
UI

∆Iij ťiťj is the variance due to the first stage sampling and VSSU =
∑
UI

Vi

πIi

is the variance due to the second stage sampling. We have Vi = V (t̂iπ|sI) =
∑
Ui

∑
Ui

∆kl|iy̌k|iy̌l|i.

An unbiased estimator for Vi is :

V̂i =
∑
sI

∑
sI

∆̌kl|iy̌k|iy̌l|i.

Then, an unbiased estimator for V (t̂π) is :

V̂ (t̂π) =
∑
sI

∑
sI

∆̌Iij
t̂iπ
πIi

t̂jπ
πIj

+
∑
sI

V̂i

πIi
.

Remark 8 : For particular conditions, we can obtain designs already studied.

1. for sI = UI we obtain stratified sampling (described in section 3) and we find the formula
for the variance estimator;

2. for si = Ui for all i, then we have cluster sampling which we describe in next section.

5.1.2 Two-stage sampling with SI designs at each stage

Let us denote by SI,SI the two-stage sampling with SI designs at both stages. At first stage, we
select an SI sample sI of size nI from the population UI of PSUs. For each i ∈ sI , we draw an
SI sample si of size ni from Ui. The final sample is s = ∪i∈sI si.

The first and second order inclusion probabilities are

πIi =
nI

NI
, πIij =

nI(nI − 1)
NI(NI − 1)

for the 1st stage

πk|i =
ni

Ni
, πkl|i =

ni(ni − 1)
Ni(Ni − 1)

, k, l ∈ Ui for the 2nd stage

The π-estimators for the PSU totals ti =
∑

Ui
yk (with respect to the second stage) are

t̂iπ =
∑
si

yk

πk|i
=
∑
si

Ni
yk

ni
= Niysi

for all i ∈ sI and the π-estimator for the total ty =
∑

U yk is

t̂π =
∑
sI

t̂iπ
πIi

=
NI

nI

∑
sI

t̂iπ.

The variance is

V (t̂π) = N2
I

1− fI

nI
S2

tUI
+

NI

nI

∑
UI

N2
i

1− fi

ni
S2

yUi

where fI = nI/NI , fi = ni/Ni, S2
tUI

=
∑

UI
(ti− tUI

)2/(NI − 1) is the variance in UI of the total
ti and S2

yUi
=
∑

Ui
(yk − yUi

)2/(Ni − 1) is the variance in Ui of yk.
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5.1.3 Two-stage sampling with R and SAS

5.2 Cluster sampling

5.2.1 Description

It is the simplest case of multistage sampling since we deal with only one-stage. In cluster
sampling, the population is divided into NI PSU which are called now clusters. Next, a sample
sI of clusters is selected as described in the first step of multi-stage sampling according to a
sampling design pI(·). Every individual from the selected cluster is observed.
The final sample is

s =
⋃
i∈sI

Ui

of size ns =
∑

sI
Ni.

The clusters may be confounded with strata since both are disjointed subpopulations of U .

Nevertheless, the way clusters and strata are build is not the same and we can say the same thing
about the selection procedure. Whereas stratification generally increases precision compared to
SI sampling, cluster sampling generally decreases it. Members of the same cluster tend to be
more familiar that elements selected at random from the whole population (Lohr, 1999):

1. members of the household tend to have similar political views;

2. fish in the same lake tend to have the similar concentration of mercury.

By sampling everyone in the cluster, we repeat the same information instead of obtaining new
one and the estimations are less precise than obtained with a SI sampling. Cluster sampling is
used in practice because it is usually much cheaper and more convenient to sample in clusters
than randomly in the population.

The first and second inclusion probabilities are

πk = πIi if k ∈ Ui

πkl =

{
πIi if k, l ∈ Ui

πIij if k ∈ Ui, l ∈ Uj , i 6= j

The population total can be expressed as

ty =
∑
U

yk =
∑
UI

ti

where ti =
∑

Ui
yk.

Result 12 Let us consider the cluster sampling.

1. The π-estimator of ty is t̂π =
∑

sI
ťi =

∑
sI

ti
πIi

.

2. The variance of t̂π is given by V (t̂π) =
∑

UI

∑
UI

∆Iij ťiťj .

3. The variance estimator is V̂ (t̂π) =
∑

sI

∑
sI

∆̌Iij ťiťj .
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If the first-stage sampling design is of fixed size, the Yates-Grundy variance formulas can be
used for t̂π,

V (t̂π) = −1
2

∑
UI

∑
UI

∆Iij(ťi − ťj)2

with the unbiased variance estimator

V̂ (t̂π) = −1
2

∑
sI

∑
sI

∆̌Iij(ťi − ťj)2

Remark 9 The systematic sampling is a particular case of cluster sampling obtained when the
sample size from the first stage is one, nI = 1 and NI clusters corresponds to the a possible
systematic samples.

5.2.2 Simple random cluster sampling (SIC)

We apply the result 12 when the sample of clusters sI of size nI is selected according to a SI
design among the NI clusters. The inclusion probabilities are given by πIi = nI/NI and

t̂π =
∑
sI

NI
ti
nI

= NItsI .

The variance of the π-estimator is given by

V (t̂π) = N2
I

1− fI

nI
S2

tUI

where fI = nI/NI and S2
tUI

=
∑

UI
(ti−tUI

)2/(NI−1) is the variance of ti with tUI
=
∑

UI
ti/NI .

The variance estimator is given by

V̂ (t̂π) = N2
I

1− fI

nI
S2

tsI

where S2
tsI

=
∑

sI
(ti − tsI )

2/(nI − 1).

5.2.3 Efficiency of SIC

We introduce the homogeneity coefficient

δ = 1−
S2

yW

S2
yU

(5.1)

where
S2

yW =
1

N −NI

∑
UI

∑
Ui

(yk − yUi
)2

is the pooled within-cluster variance which can be written as

S2
yW =

∑
UI

(Ni − 1)S2
yUi∑

UI
(Ni − 1)

where S2
yUi

=
∑

Ui
(yk − yUi

)2/(Ni − 1).
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Result 13 The homogeneity coefficient δ satisfies

− NI − 1
N −NI

≤ δ ≤ 1.

Proof From (5.1), we have δ ≤ 1. We use the ANOVA decomposition

SST = SSW + SSB or

(N − 1)S2
yU = (N −NI)S2

yW +
∑
UI

Ni(yUi
− yU )2

which gives that
S2

yW

S2
yU

≤ N − 1
N −NI

. The lower bound on δ follows from the fact that δ = 1−
S2

yW

S2
yU

.

Remark 10 1. A small δ-value means
S2

yW

S2
yU

proxy to unity or equivalently, elements in the

same cluster dissimilar with respect to the study variable. We have in this case a low degree
of homogeneity within clusters.

2. At large δ-value means a high degree of homogeneity within clusters.

3. δ = 1 means S2
yW = 0.

4. δ = 0 means S2
yW = S2

yU .

5.2.4 Comparison between SIC sampling and SI sampling

5.2.5 Cluster sampling with R and SAS
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Chapter 6

Taylor linearization

In the previous section, a π-estimator was presented for the population total, with special
attention on the variance estimator and its expression for different sampling designs.

But, in practice, in most of the cases, we are confronted with surveys that involve not only
one, but several variables of interest and more generally, the unknown quantity depends on these
variables through a general function. An example is the ratio of two unknown population totals

R =
∑

U yk∑
U zk

=
ty
tz

where y and z are two variables of study. First, we will study the linear case, then the general
case will be considered by using Taylor series expansions. The use of Taylor series implies the
introduction of supplementary conditions on the population and on the sampling design. They
will permit the development in Taylor series and also the convergence of it. The subject was
treated by Wolter (1985), Särndal et al. (1992). We will give a short review of the main results.

6.1 π estimators for the linear case

Suppose that there are J variables of study Y1, . . . ,Yj , . . . ,YJ , and let yjk be the value of Yj for
the k-th element of the population, for all j = 1, . . . , J and all k = 1, . . . , N. Let tj =

∑
U yjk

be the total of the Yj variable for all j = 1, . . . , J. The objective is to estimate these quantities,
namely the components of the following vector:

t = (t1, . . . , tj , . . . , tJ)′

For each variable of interest the theory of the π estimator, presented in the first section, can be
applied. A sample s is drawn from U , according to a sampling design p(s), with the probabilities
of inclusion of first and second order, πk and πkl and for all k ∈ s we observe the value of the
vector:

yk = (y1k, . . . , yjk, . . . , yJk)′

and each tj total is estimated by the π-estimator t̂jπ =
∑

s y̌jk so that the π-estimator of t is

t̂π = (t̂1π, . . . , t̂jπ, . . . , t̂Jπ)′

We have the following results :
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Result 14 (Särndal et al. 1992): The variance-covariance matrix of t̂π has the following ex-
pression:

V (t̂π) = E
(
(t̂π − t)(t̂π − t)′

)
and is a symmetric matrix with the j-th diagonal element given by the variance of t̂jπ and the
elements jj’ given by the covariance of t̂jπ and t̂j′π :

V (t̂jπ) =
∑
U

∑
U

∆kly̌jky̌jl

and
C(t̂jπ, t̂j′π) =

∑
U

∑
U

∆kly̌jky̌j′l

The matrix V (t̂π) is estimated with no bias by the matrix V̂ (t̂π) such that the jth diagonal
element is

V̂ (t̂jπ) =
∑

s

∑
s

∆̌kly̌jky̌jl

and the jj’ element is :
Ĉ(t̂jπ, t̂j′π) =

∑
s

∑
s

∆̌kly̌jky̌j′l

We consider now a more general situation, namely when the requested estimator for a pa-
rameter population θ can be written as follows:

θ = f(t1, . . . , tJ)

and f is a linear function. Then, applying the above result, an estimator for θ is given by:

θ̂ = f(t̂1, . . . , t̂J).

This is derived from the fact that if f is a linear function then θ can be written as:

θ = a0 +
J∑

j=1

ajtj = f(t1, . . . , tJ).

Consequently θ̂ = a0 +
∑J

j=1 aj t̂jπ = f(t̂1π, . . . , t̂Jπ) where t̂jπ =
∑

s

yjk

πk
is the π-estimator for

the total tj . We can apply now the conclusions from the previous result in order to obtain the
expressions for the variance-covariance matrix of θ and also for an estimator of this matrix.

Result 15 For a parameter of the population, having the form :

θ = a0 +
J∑

j=1

ajtj = f(t1, . . . , tJ)

an estimator is given by :
θ̂ = f(t̂1π, . . . , t̂Jπ)

with the variance-covariance matrix :

V (θ̂) =
J∑

j=1

J∑
j′=1

aja
′
jC(t̂jπ, t̂j′π)
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and V̂ (θ̂) =
J∑

j=1

J∑
j′=1

aja
′
jĈ(t̂jπ, t̂j′π)

where C(t̂jπ, t̂j′π) and Ĉ(t̂jπ, t̂j′π) are given in the result from above.

As a conclusion, if a parameter of interest is expressed by a linear function of the totals of
q variables of study, then the expressions for V and V̂ can be deduced in a simple way.

6.2 The general case

The case when f is not a linear function will be reduced to the former one. The main idea is
to approximate f around the true value by a linear function, for which we know how to derive
formulas for the variance and for an estimator of the variance, according to the case one. Under
general conditions, we will show how the variance of the estimator can be approximated by the
variance of a linear estimator. The approximation will be made by a first-order Taylor series
expansion and the method is called Taylor linearization. We start with a consistent estimator
t̂ for t and a function f which satisfies several conditions, the expansion in Taylor series of f

around the point t = (t1, . . . , tJ) will give:

1. an approximate expression for the design variance of θ̂ = f(t̂) ;

2. a suitable estimator of the variance of θ̂.

But for a finite population U we can not define the consistency and asymptotic unbiasedness of
an estimator. For achieving these conditions and also for allowing us to develop f in a Taylor
series with a remainder of low order, we need supplementary conditions and mathematical results
concerning the behaviour of a finite population and of the probabilities πk, πkl when n and N

increase to infinite simultaneously. In order to obtain an infinite population, we will consider
the initial population U = {1, . . . , k, . . . , N} with the corresponding πk.
We give here Särndal’s way (1980) to obtain an infinite population. Isaki & Fuller (1982),
Särndal et al. 1992 propose different ones. Särndal (1980) reproduces this population t-1 times.
For all t, a sample s is selected from each U according to p(s), with the same πk, for all t. The
resulting population will have Nt = Nt elements from which we select a sample s(t) consisting
of ns(t)

=
∑t

γ=1 nsγ = nt elements. Next, we allow t → ∞ and it results that Nt → ∞ and
ns(t) → ∞ but n and N remains constant. This framework allows us to define the properties
of consistency and asymptotic unbiasedness for an estimator. Now we can derive the results for
Taylor linearization. Let us give two results which will be used in the next.

Result 16 (Wolter 1985): Let f : ξJ → R be a real valued function defined on a q dimensional
Euclidian space, continuous, differentiable with continuous partial derivatives of order two in an
open sphere containing a = (a1, . . . , aJ)′. For Xn = (X1n, . . . , XJn)′ satisfying:

Xn = a + Op(rn) where rn → 0,

we have:

f(Xn) = f(a) +
J∑

j=1

(Xjn − aj)
∂f

∂xj
(a) + Op(r2

n).
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As mentioned, we want to estimate a parameter expressed by a nonlinear function of totals
of J variables of interest:

θ = f(t1, . . . , tJ) where tj =
∑
U

ykj , j = 1, . . . , J.

with f : ξJ → R continuous, differentiable with continuous partial derivatives.

We define an estimator for θ by substitution. It is obtained by replacing each total with the
corresponding π estimator:

θ̂ = f(t̂1π, . . . , t̂Jπ).

We can take as vectors a and Xn from Result 16 the vectors t and tπ as defined at the
beginning of this section,

t = (t1, . . . , tJ)′ and

t̂π = (t̂1π, . . . , t̂Jπ).

We make the following assumptionswhich have the following properties :

1. N−1(t̂π − t) P→ 0 and

2. N−1(t̂π − t) = Op(n−
1
2 )

3. n
1
2 N−1(t̂π − t) L→ N(0,Σ).

For N−1t, N−1t̂π given above and rn = n−
1
2 the conditions from Result 16 are satisfied. We

suppose also that it exists α > 0 such that f(N−1t) = N−αf(t).
We give below the first-order Taylor expansion of f(N−1t̂π) around f(N−1t̂π).

N−αf(t̂1π, . . . , t̂Jπ) = N−αf(t1, . . . , tJ)

+ N−α
J∑

j=1

(t̂jπ − tj)
∂f(v1, . . . , vJ)

∂vj

∣∣∣∣
(v1,...,vJ )=(t1,...,tJ )

+ Op

(
1
n

)
and if we note with αj = ∂f(v1,...,vJ )

∂vj

∣∣∣
(v1,...,vJ )=(t1,...,tJ )

for j = 1, . . . , J we obtain the equivalent

formula :

N−αθ̂ = N−αθ + N−α
J∑

j=1

(t̂jπ − tj)αj + Op

(
1
n

)
and

N−αθ̂ = N−αθ + Op(n−
1
2 ).

In particular θ̂ can be approximated by N−α(θ̂− θ) ' N−α
∑J

j=1(t̂jπ − tj)αj . By assumption 3,
we obtain that N−α(θ̂ − θ) is asymptotically normal with mean zero and variance equal to the
variance of

∑J
j=1(t̂jπ − tj)αj .

V (
J∑

j=1

(t̂jπ − tj)αj) = αΣα′
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where α = (α1, . . . , αJ) is the vector of the partial derivatives of f calculated in t = (t1, . . . , tq)
and Σ is the covariance matrix of tπ − t,

V (θ̂) ' αΣα′ = V

(
J∑

i=1

αj(t̂jπ − tj)

)

To obtain a variance estimator, we will substitute sample-based estimates of α and Σ . Suppose
that the estimator α̂ and Σ̂ are available; then an estimator for MSE (θ̂) is given by:

V̂ (θ̂) = α̂Σ̂α̂′.

As it can be observed, the expressions for approximative variance and variance estimator are
complicated because they involve the calculation of the variance-covariance matrix Σ; for the
variance estimation, we need to calculate an estimator for each element of Σ̂. Woodruf (1971)
gives a simple method for which the variance estimation is simplified. This method is a general-
ization of the Keyfitz’s (1957) method for obtaining the variances for specific types of estimates
derived from specific sample designs. It consists in reordering the components of the sum∑J

j=1 αj t̂jπ. We have:

J∑
j=1

αj t̂jπ =
J∑

j=1

αj

(∑
s

yjk

πk

)
=
∑

s

1
πk

 J∑
j=1

αjyjk


=

∑
s

uk

πk
=
∑

s

ǔk.

where uk =
∑J

j=1 αjyjk. As it can be observed,
∑J

j=1 αj t̂jπ can be written equivalently as the π-
estimator for the total of the new introduced quantities uk. Because the uk for all k ∈ U depend
on αj which on their turn, depend on the Y1, . . . ,Yq which are unknown we obtain that uk are
unknown and so they can not be used. The quantities αj are estimated by α̂j the corresponding
π-estimator

α̂j =
∂f(v1, . . . , vJ)

∂vj

∣∣∣∣
(v1,...,vJ )=(t̂1π ,...,t̂Jπ)

and then the uk are estimated by:

ûk =
J∑

j=1

α̂jykj .

It results then V (θ̂) ' V (
∑

s ǔk). Now we can give the result obtained by Woodruff (1971).

Result 17 (Woodruff 1971)
1. An approximatively unbiased estimator for the population parameter

θ = f(t1, . . . , tJ)

is given by the substitution estimator:

θ̂ = f(t̂1π, . . . , t̂Jπ)
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where t̂jπ is the corresponding π estimator of tj.
2. Using the Taylor linearization, the approximative variance is :

V (θ̂) '
∑
U

∑
U

∆kl
uk

πk

ul

πl

where uk =
∑J

j=1 αjykj and αj = ∂f(v1,...,vJ )
∂vj

∣∣∣
(v1,...,vJ )=(t1,...,tJ )

and

3. The estimated variance has the expression:

V̂ (θ̂) =
∑

s

∑
s

∆̌kl
ûk

πk

ûl

πl

where ûk =
∑J

j=1 α̂jykj and α̂j is the π estimator for αj .

Supposing that the general conditions given by Isaki & Fuller (1982) are fulfilled, ûk is a
consistent estimator for uk and as a result V̂ (θ̂) is consistent for V (θ̂). For a design of fixed size,
we have the alternative formulas for the approximative variance and variance estimation:

V (θ̂) ' −1
2

∑∑
U

∆kl (ǔk − ǔl)
2

V̂ (θ̂) = −1
2

∑∑
s

∆̌kl (ǔk − ǔl)
2

In large sample, we estimate the approximative variance of θ̂ given in Woodruff’s result and
the found value can be considered as an estimator of the true variance.

From the above result, we can summarize and give the steps when the Taylor technique is
applied, namely:

• For the population parameter θ = f(t1, . . . , tJ), expressed as a function of the J totals, we
derive the substitution estimator θ̂ which is approximately unbiased for θ. The variance
and variance estimator of θ̂ must be calculated.

• The linearized variable, uk, is derived for all k ∈ U ; these quantities are calculated in the
population, uk being expressed as functions of the J totals t1, . . . , tJ .

• The unknown quantities uk are estimated by ûk.

• The parameter is approximated by θ̂ ' θ + (
∑

s ǔk −
∑

U uk).

• According to the result of Woodruf we have

V (θ̂) ' V

(∑
s

uk

πk

)
=
∑
U

∑
U

∆kl
uk

πk

ul

πl
.

• A Horvitz-Thompson variance estimate, based on the unknown uk can be obtained:

V̂ (θ̂) =
∑

s

∑
s

∆̌kl
uk

πk

ul

πl
.

• The estimated variance based on the sample estimators ûk has the expression:

V̂ (θ̂) =
∑

s

∑
s

∆̌kl
ûk

πk

ûl

πl
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6.3 Examples

In the following, we consider several of non-linear parameter and apply in the Taylor technique.

Estimation of a ratio

Let us consider the ratio between two unknown population totals ty =
∑

U yk and tx =
∑

U xk :

R =
ty
tx

=
∑

U yk∑
U xk

= f(ty, tx)

where f(v1, v2) = v1
v2

; we want to estimate R.

1. The substitution estimator of R is R̂ =
t̂yπ

t̂xπ

where t̂yπ, t̂xπ are the π estimators for ty, tx.

2. The linearized variable of R is :

uk = yk
∂f(v1, v2)

∂v1

∣∣∣∣
(v1,v2)=(ty ,tx)

+ xk
∂f(v1, v2)

∂v2

∣∣∣∣
(v1,v2)=(ty ,tx)

= yk
1
tx

+ xk

(
−ty
t2x

)
=

1
tx

(yk −Rxk) .

3. R̂ is approximately estimated by

R̂ ' R +

(∑
s

uk

πk
−
∑
U

uk

)
= R +

1
tx

∑
s

yk −Rxk

πk
.

because
∑

U uk = 0 in this case.

4. The approximated variance of R̂ is:

V (R̂) '
(

1
tx

)2∑
U

∑
U

∆kl
yk −Rxk

πk

yl −Rxl

πl
.

5. The variance estimator is obtained by replacing uk by ûk =
1

t̂xπ

(
yk − R̂xk

)
in the

expression of the estimated Horvitz-Thompson variance formula:

V̂ (R̂) =
1

t̂2xπ

∑
s

∑
s

∆̌kl
yk − R̂xk

πk

yl − R̂xl

πl
.

Estimation of a mean

Another example is the derivation of an estimator for the mean of the population.
There are two situations : N is known and not. In the first situation, an unbiased estimator for
yU = 1

N

∑
U yk is :

ŷUπ =
1
N

∑
s

yk

πk
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with the variance and variance estimation, respectively :

V (ŷUπ) =
1

N2

∑
U

∑
U

∆kl
yk

πk

yl

πl

V̂ (ŷUπ) =
1

N2

∑
s

∑
s

∆̌kl
yk

πk

yl

πl

derived using the general theory of the π estimator.
For N unknown, we need an estimator for N . The quantity N can be regarded as the total

of the variable xk = 1 for all k ∈ U , then N = tx and the substitution estimator is N̂ =
∑

s

1
πk

.

Then yU can be regarded as a ratio of two totals variable. Using the first example, an estimator
for yU is :

ỹs =

∑
s

yk

πk∑
s

1
πk

=
1
N̂

∑
s

yk

πk

with the approximate variance :

V (ỹs) '
1

N2

∑
U

∑
U

∆kl
yk − yU

πk

yl − yU
πl

and the variance estimator :

V̂ (ỹs) =
1

N̂2

∑
s

∑
s

∆̂kl
yk − ỹs

πk

yl − ỹs

πl
.

For SI and STSI designs the two estimators ỹs and ŷUπ are identical. Generally, the estimator
ỹs gives better results than ŷUπ even if N is known. We give below several arguments in favor
of ỹs.

1. Compare the variances of ỹs and ŷUπ. The estimator ỹs is preferred when yk − yU are all
small.

2. Another reason is that ỹs works better when we have designs of variable sizes such as
Bernoulli or Poisson designs. More exactly, yU is variable due to variable sample size
which is not the case for ỹs.

3. A third argument in favor of ỹs arises in the case when πk are poorly (or negatively) corre-
lated with the yk values. In this situation, ỹs enjoys a kind of adaptability or insensitivity
to unlucky samples that is lacking in yU because its denominator remains fixed.

Ratio estimator

Suppose we have a study variable, y, and that we have the auxiliary variable x; xk is the value
of x for the k-th element of the population and xk is known for all k in U . The objective is to
estimate ty =

∑
U yk; ty can be written :

ty = tx
ty
tx

tx =
∑

U xk is a known quantity; then R = ty
tx

is the ratio of two totals and we can apply the
results from the first example. It follows :
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1. t̂y = txR̂, where R̂ =
t̂yπ

t̂xπ

2. V (t̂y) '
∑∑

U ∆kl
yk −Rxk

πk

yl −Rxl

πl

3. V̂ (t̂y) =
t2x
t̂2xπ

∑
s

∑
s

∆̌kl
yk − R̂xk

πk

yl − R̂xl

πl
.

Estimation of the regression coefficient

Let us derive an approximately unbiased estimator for the coefficient of multiple regression. Let
X1, . . . ,Xq be q auxiliary variables and B1, . . . , Bq be the coefficients of regression of Y through
X1, . . . ,Xq. We intend to obtain an approximately unbiased estimator for the vector of regression
coefficients B = (B1, . . . , Bq)′ whose variance or approximative variance can be calculated. We
denote by xk the vector containing the values taken by the auxiliary variables for the k-th
element in the population,

xk = (x1k, . . . , xqk)′ for all k ∈ U

and T =
∑

U xkxk
′

1. The vector of regression coefficients has the expression:

B = (B1, . . . , Bq)′ = (
∑
U

xkxk
′)−1(

∑
U

xkyk).

It can be observed that B can be written as a function of totals. Thus it is possible to apply

the method of Taylor linearization. We have B = f(tq, tz) =
tq
tz

where:

tq =
∑
U

qk the total of the new variable qk = xkyk, k ∈ U ,

and
tz =

∑
U

zk the total of the new variable zk = xkx′k, k ∈ U .

2. The substitution estimator for B is:

B̂ =

(∑
s

xkx′k
πk

)−1(∑
s

xkyk

πk

)
.

3. The linearized variable of B is:

uk = qk
∂f(v1, v2)

∂v1

∣∣∣∣
(v1,v2)=(tq ,tz)

+ zk
∂f(v1, v2)

∂v2

∣∣∣∣
(v1,v2)=(tq ,tz)

= qk
1
tz

+ zk

(
−tq
t2z

)
= T−1xk(yk − x′kB).
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4. We can obtain an approximative expression for B̂:

B̂ ' B +

(∑
s

ǔk −
∑
U

uk

)
= B + T−1

(∑
s

xkyk

πk
− T̂B

)
.

5. The approximated variance of B̂ has the expression:

V (B̂) ' T−1VT−1

where V = (vjj′)i,j=1,...,q, vij = vji and vjj′ =
∑
U

∑
U

∆kl
xjk(yk − x′kB)

πk

xj′l(yl − x′lB)
πl

.

6. The linearized variable uk is estimated by ûk = T̂−1xk(yk − x′kB̂), T̂ =
∑

s
xkx′k
πk

and the
estimator for the variance of B:

V̂ (B̂) = T̂−1V̂T̂−1

where V̂ =
(
v̂jj′
)

is a q × q matrix with elements:

v̂jj′ =
∑

s

∑
s

∆̌kl
ûk

πk

ûl

πl
.

Remark 11 :The same result would have been obtained more easily if we had considered B as
a ratio of the totals of the variables qk and zk and we had applied directly the linearized variable
for a ratio derived at first example.



Chapter 7

”Methods de redressement ”

7.1 Model Approach

The previous sections treated the parameter vector y = (y1, . . . , yN ) as a non-random quantity,
the only randomness being the sampling design p(·). In the present section, we will consider that
y = (y1, . . . , yN ) is the outcome of a vector random variable Y = (Y1, . . . , YN ) with distribution
ξ. We call superpopulation model a specified set of conditions for the class of distributions of
which ξ belongs to. The main aspect of the statistical analysis in the superpopulation model is
thus that y is treated as the outcome of Y about which certain features are assumed known.
The superpopulation model ξ can be regarded as a mathematical device used to make explicit
the theoretical derivations.

Among the first having used the superpopulation model, we mention Cochran (1939, 1946),
Deming and Stephan (1941), Madow and Madow (1944).

Although the use of a superpopulation model ξ is not accepted by all survey practitioners,
there are situations when it is arguable that this approach will perform much better. We men-
tion two such situations. The first one is the inclusion of the treatment of nonsampling errors
in survey sampling (Särndal et al. 1992, ch. 14). Secondly, it is possible under a superpopula-
tion model ξ to make comparison of variances of two p-unbiased strategies, fact which entails
the resolution of some of the nonexistence problems in uniformly minimum variance p-unbiased
estimation (Cassel et al. 1977).

In the case of a superpopulation model ξ, we have two kinds of randomness: one already
existing, the sampling design p(·) and the new one introduced by the joint distribution ξ of
Y1, . . . , YN . We need supplementary notations induced by ξ. Let Q = Q(Y1, . . . , YN ) be a
function of Y1, . . . , YN and we denote by Eξ(Q) the expectation of Q with respect to ξ defined
as follows

Eξ(Q) =
∫

Qdξ.

In the same manner, we can define other statistical quantities as variance and covariance
with respect to ξ. In the next, we will use the index p for all the quantities calculated with
respect to the design p; for example, Ep is the p-expectation and ξ for the model.
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In the new frame, we call statistic a function T = T (D) where D = {(k, Yk) : k ∈ S}, S

being a random variable with values in S the set of all possible sample s. So, the function T,

for any given value s of S, depends on those Yk for which k ∈ s. The statistic T for S = s used
for making inference about the population mean Y = N−1

∑
U Yk is called predictor and T for

Yk = yk is called an estimate for y = N−1
∑

U yk.

Definition 2 :

1. T is called p-unbiased for Y if and only if, for a given design p,

Ep(T (y)) = y for all y = (y1, . . . , yN ).

2. T is called ξ-unbiased for Y if and only if, for a given design ξ,

Eξ(T (Y )− Y ) = 0 for all s ∈ S.

3. T is called pξ-unbiased for Y if and only if, for given p and ξ

EξEp(T (Y )− Y ) = 0.

For a superpopulation model approach, the choice of a strategy (p, T ) will be dictated by the
objective to minimise the ξ-expected p-MSE,

EξMSEp(p, T ) = EξEp(T − Y )2.

Although the objective is the same, there are two different ways of obtaining the desired mini-
mum called the model-based approach and the design-based approach. For the first one (Brewer
1963, Royall 1970, 1971), the sampling design is of minor importance. The objective is to choose
T such that for every given sample s, T minimizes Eξ(T −Y )2. We will not develop here this ap-
proach but we mention its application in repeated surveys (Blight & Scott 1973, Scott & Smith
1974). For the second one (Cassel et al. 1976, Särndal 1980, Särndal et al. 1989), the support
is on the sampling design p. We look for an estimate T of y such that T minimizes Ep(T − y)2.
We give a brief presentation of the main results in the case of the design-based approach.

Finally, we consider only the noninformative designs fact which allows us to interchange the
order in calculating the expectations with respect to p and ξ.

Cassel, Särndal & Wretman (1976) introduce the p-unbiased generalized difference estimator

TGD =
∑

s

Yk − ek

Nπk
+
∑
U

ek

N

for an arbitrary vector e = (e1, . . . , eN ); TGD is ξ-unbiased if ek = µk, for ξ defined as follows
(Cassel, Särndal & Wretman 1976)

ξ :


Eξ(Yk) = µak + bk = µk;

Eξ(Yk − µk)2 = a2
kσ

2 = σ2
k;

Eξ{(Yk − µk)(Yl − µl)} = akalρσ2 = σkl for k 6= l;

where ak > 0, bk for k = 1, . . . , N are known numbers with
∑N

k=1 ak = N and µ, σ2 and ρ are
unknown and −1

N−1 ≤ ρ ≤ 1.
We have the following optimality result:
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Result 18 : (Cassel, Särndal and Wretman 1976)
Under the above model, the optimal strategy (p, T ) with p a fixed size design of size n and T a
p-unbiased linear estimator of Y is (p0 : TGD0), where

TGD0 =
∑

s

Yk − bk

nak
+
∑
U

bk

N

and p0 = p0(s) is the sampling design with the inclusion probabilities πk = fak, f = n
N .

The estimator TGD0 is also ξ and pξ-unbiased. The HT estimator, t̂yπ belongs to the class TGD

if e = 0 or if ek = πk for p a fixed size design. From the above result, we have in general
EξVp(p, t̂yπ) ≥ EξVp(p0, TGD0) with equality for p = p0 and bk ∝ ak.

We consider in the next a particular model ξ (Särndal, 1980). Let us consider X1, . . . ,Xq

auxiliary variables with x′k = (xk1, . . . , xkq) and that the variables Y1, . . . , YN are independent.
For the regression model:

Eξ(Yk) = x′kβ = µk

Vξ(Yk) = σ2
k = σ2vk

where β′ = (β1, . . . , βq) and σ2 are unknown, vk = v(xk) is a known function for all k in U ,
TGD0 becomes:

TGR =
∑

s

Yk

Nπk
+

q∑
j=1

βj

(
1
N

∑
U

xkj −
∑

s

xkj

Nπk

)
= N−1

[
t̂yπ + (tx − t̂xπ)′β

]
with t̂yπ =

∑
s

Yk

πk
and t̂xπ =

∑
s

xk

πk
. For the auxiliary information, we need only to know

tx =
∑

U xk. If we suppose that all βj are known, then the above optimality result give that
TGR is optimal for πk ∝ vk for all k.

The estimator TGR can be viewed as a correction of the ξ-model biased but p-unbiased
estimator N−1t̂yπ,

TGR = N−1t̂yπ −Bξ(N−1t̂yπ)

where Bξ(N−1t̂yπ) = N−1(tx − t̂xπ)′β is the ξ-bias of N−1t̂yπ (Thompson 1997).

More realistic, βj are unknown, for all j = 1, . . . , q. Särndal (1980) proposes to estimate the
vector β = (β1, . . . , βq)′ by design-based β̂s as follows

β̂s = G′
sYs =

(
W ′

sXs

)−1
W ′

sYs

where Ws = (wkj)k=i,n,j=i,q and the wkj may or may not depend on the known quantities x′k
and vk, Xs = (x′k)k∈s and Ys = (Yk)k∈s. It results that the vector (wk1, . . . , wkq) is the vector
of weights applied to unit k. The resulting estimator is the so-called generalized regression
estimator :

T̂GR = N−1
[
t̂yπ + (tx − t̂xπ)′β̂s

]
. (7.1)

This estimator can be obtained without implying the variance structure of the model and it has
the following properties:
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Result 19 (Särndal 1980)
1. The estimator β̂s is ξ-unbiased for β:

Eξ(β̂s) = β.

2. T̂GR with βs given by (7.1) is model unbiased under the ξ model.

Thus we can use the model ξ to obtain ξ-unbiased estimators for βs but the basic properties are
not dependent on whether the model ξ holds or not. It implies that we have a model-assisted
and not a model-dependent estimator.

If TGR was p-unbiased, T̂GR loses this property because β̂s as a nonlinear function is not
p-unbiased for β. Särndal (1980) states that an exact design-unbiasedness can entail loss in ef-
ficiency and he proposes the asymptotic design-unbiasedness (ADU) and consistency of T̂GR as
minimum requirements. Robinson & Särndal (1983) gives conditions for which T̂GR is ADU and
consistent for Y . At the same time, they give an approximation for the design mean squared
of order O(n−1). These conditions do not require the superpopulation model to be true, but
optimality is reached if the model is true. Robinson & Särndal (1983) state that in the case of
perfect correctness of the model, the mean square error is minimized for p(s) with the inclusion
probabilities πk ∝ σk.

Remark 12 There is a particular case when T̂GR is exactly p-unbiased, namely for a model ξ

for which Eξ(Yk) = βxk and a sampling design p with πk ∝ xk. In this case, T̂GR = N−1t̂yπ.

We return to the expression of β̂s = G′
sY s = (W ′

sXs)
−1

W ′
sY s. Särndal (1980) discusses

two particular choices for the matrix W s : π-inverse weighting and best linear unbiased weight-
ing.

1. The π-inverse weighting is obtained for weights W s such that for some vector c =
(c1, . . . , cq)′ we have

1′sΠ
−1
s = c′W ′

s

for Πs = diag(πk)k∈s and 1s the column vector composed of n ones. In this situation the
estimator T̂GR given by (7.1) has the appealing form

T̂GR = N−1t′xβ̂s

since

t̂yπ − t̂′xπβ̂s = 1′sΠ
−1
s (Y s −Xsβ̂s) = c′W ′

s(Y s −Xsβ̂s) = 0

with β̂s = (W ′
sXs)

−1
W ′

sY s.

Särndal gives two examples of Ws satisfying the relation (7.2).

• The first one is
Ws = Π−1

s Xs

and the model ξ includes the intercept. In this case, β̂s,1 = (X′
sΠ

−1
s Xs)−1X′

sΠ
−1
s Ys.
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• Another possibility is
W s = Π−1

s V −1
s Xs

and the model variance Vs = diag(vk)k∈s satisfies vk = c′xk. In this case

β̂GREG = (X ′
sV

−1
s Π−1

s Xs)−1X ′
sV

−1
s Π−1

s Y s.

With this expression for β̂GREG, T̂GR becomes T̂GREG discussed by Särndal, Swensson
and Wretman (1989). Särndal, Swensson and Wretman (1992) obtain T̂GREG through
a different way and they analyze it for a general model variance vk.

2. The best linear unbiased weighting is obtained for W s = V −1
s Xs which gives for β the

estimator
β̂BLU = (X′

sV
−1

s Xs)−1X′
sV

−1
s Ys.

When inserted into (7.1) this gives the special case of T̂GR to be denoted T̂BLU . This
weighting merits attention because it is, for many statisticians, the natural way to estimate
under the model ξ.

Montanari (1987) derives the expression for the coefficient of regression β who minimizes the
p-variance of

TGR = N−1
[
t̂yπ + (tx − t̂xπ)′β

]
as βopt =

[
Var

(∑
U

xk

πk

)]−1

Cov

(∑
U

xk

πk
,
∑
U

Yk

πk

)
. Unfortunately, the expression of βopt de-

pends on unknown quantities making so impossible its derivation.
At this point of discussion a question arises: which of the two estimator presented here,

T̂GREG and T̂BLU , is preferable? T̂BLU being obtained for the best linear unbiased estimator
for β is preferred by many statisticians while survey practitioners, such as Särndal et al. (1992,
pp 519), argue for T̂GREG. Their argument is that T̂GREG is obtained for the sample-weighted
estimator β̂GREG which is more robust than the unweighted β̂BLU , namely β̂GREG remains
design-consistent even if the model is wrong. Besides, β̂GREG is the solution of the optimal
sample estimating function (Godambe & Thompson 1986, Godambe 1995):∑

s

1
σ2

kπk
xk(Yk − x′kβ) for

σ2
k = σ2vk.

The regression coefficient β̂GREG can be written as

β̂GREG = (X′
sV

−1
s Π−1

s Xs)−1X′
sV

−1
s Π−1

s Ys

=

(∑
s

xkx′k
σ2

kπk

)−1∑
s

xkYk

σ2
kπk

The same formula for β̂GREG would have been obtained if we had used the substitution
method described in chapter concerning Taylor linearization method for estimating the coeffi-
cient of regression

β̂ = (X′
NV −1

N XN)−1X′
NV −1

N YN (7.2)
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(Särndal et al. 1992, pp 193). The estimator β̂GREG is not p-unbiased for β but is ap-
proximately p-unbiased and ξ-unbiased, Eξ(β̂GREG) = β. Under the conditions of consistency
given by Fuller & Isaki (1982), Fuller (2002) β̂GREG is consistent for β. More precisely, we have
β̂GREG = β + Op(n−1/2).
Särndal, Swensson and Wretman (1989) give equivalent expressions for T̂GREG. Let’s introduce
the following notations:

• the predicted value for the k-th element is denoted by Ŷk = x′kβ̂s,

• eks = Yk − Ŷk is the k-th regression residual,

• Ek = Yk−x′kβ̂ is the population fit residual, with β̂ given by (7.2) and the solution of the
normal equation, ∑

U

1
σ2

k

xk(Yk − x′kβ) = 0

• gks = 1 +
(
tx − t̂xπ

)′
T̂−1xk

σ2
k

where T̂ =
∑

s

xkx′k
σ2

kπk
and we suppose that T̂−1 exists. The

quantities gks are known in the literature as the g-weights and they were introduced by
Särndal et al. (1989).

Result 20 The generalized regression estimator T̂GREG can be written in the following equiva-
lent expressions

T̂GR = N−1
[
t̂yπ + (tx − t̂xπ)′β̂GREG

]
(7.3)

=
∑

s

gks
yk

πk
(7.4)

=
∑
U

Ŷk +
∑

s

eks

πk
(7.5)

=
∑
U

x′kβ̂ +
∑

s

gks
Ek

πk
(7.6)

In the particular case of a model ξ with vk = c′xk, for all k ∈ U , Särndal et al. (1992) prove
that the regression residuals eks have the property∑

s

eks

πk
= 0

and Thompson (1997) proves that under the same model, the population fit residualsEk, for
k ∈ U satisfy ∑

U

Ek = 0.

Then, the regression estimator T̂GREG becomes

T̂GREG = N−1
∑
U

Ŷk = N−1
∑
U

x′kβ̂s = N−1
∑

s

gks
Yk

πk
;

where gks = (tx)′ T̂−1 xk

σ2
k
.
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Result 21 (Särndal et al. 1992) The generalized regression estimator T̂GREG is approximated
by:

1.

T̂GREG0 = N−1
{

t̂yπ +
(
tx − t̂xπ

)′
β̂
}

= N−1

{∑
U

x′kβ̂ +
∑

s

Ěk

}

2. The approximate variance is given by :

V (T̂GREG) ' N−2
∑
U

∑
U

∆klĚkĚl;

3. the variance estimator is given by:

V̂g(T̂GREG) = N−2
∑

s

∑
s

∆̌kl (gksěks) (glsěls) .

From the expression of the approximate variance of T̂GREG, we can give another variance
estimator, replacing Ek by its sample-based counterpart eks:

V̂1 '
∑∑

s

∆kl

πkl

eks

πk

els

πl
.

When s is of fixed size, the Yates-Grundy variance estimator V̂1 is:

V̂Y G = −1
2

∑∑
s

∆kl

πkl

[
eks

πk
− eks

πk

]2

.

For any given model, the steps involved in deriving the regression estimator are summarized
as follows:

1. Derive β̂s, Ŷk and eks to find T̂GREG.

2. Identify the gks needed to obtain the variance estimator V̂ (T̂GREG).

3. Find β̂ and Ek which are required for the approximate variance.

We consider below two particular models and we derive the regression estimator for a general
sampling design. Then, we discuss the properties of the estimator for specified sampling design.

7.1.1 The common ratio model and the ratio estimator

A regression model assuming that yk/xk is constant is called a common ratio model or simply
ratio model :

Eξ(Yk) = βxk

Vξ(Yk) = σ2
k = σ2xk

where the parameters β and σ are unknown. This regression is a straight line through the origin.
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Result 22 The regression estimator for the total generated by the ratio model is the ratio esti-
mator

t̂GREG = (
∑
U

xk)
∑

s yk/πk∑
s xk/πk

= (
∑
U

xk)B̂. (7.7)

The approximative variance is obtained from result (21) by setting

Ek = yk −Bxk

where B =
∑
U

yk/
∑
U

xk and the variance estimator is obtained by setting

eks = yk − B̂xk

and for all k ∈ s,

gks =
∑

U xk∑
s

xk
πk

.

Proof

The ratio estimator under SI sampling

Under the SI design, the estimator given by (7.7) becomes

t̂ratio = (
∑
U

xk)
∑

s yk∑
s xk

= NxU
ys

xs
.

We use result (22). We have

B̂ =
∑

s yk/πk∑
s xk/πk

=
ys

xs

and the approximative variance of t̂ratio is the variance of the Horvitz-Thompson estimator

Ek = yk −Bxk.

We have

AV (t̂ratio) = N2 1− f

n
S2

EU with

S2
EU =

1
N − 1

∑
U

E2
k =

1
N − 1

∑
U

(yk −Bxk)2

= S2
yU + B2S2

xU − 2BSxyU

since
∑

U Ek/N =
∑

U (yk−Bxk)/N = 0. In order to calculate the variance estimator, we derive

gks =
∑

U xk∑
s xk/πk

=
xU

xs

and
eks = yk − B̂xk.
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The variance estimator is

V̂ (t̂ratio) =
∑

s

∑
s

∆kl

πkl

gkseks

πk

glsels

πl
=
(

xU

xs

)2

N2 1− f

n
S2

es

=
(

xU

xs

)2

N2 1− f

n

1
n− 1

∑
s

(yk − B̂xk)2

where

S2
es =

1
n− 1

∑
s

(eks − es)2 =
1

n− 1

∑
s

e2
ks

= S2
ys + B̂2S2

xs − 2B̂Sxys

since es = 0.

7.1.2 The common mean model

In many populations where a strong linear relationship exists between the study variable Y and
a single auxiliary variable X , the population regression line will intercept the Y axis at some
distance from the origin. A model with an intercept will give a better regression estimator than
the common ratio model discussed in the above section.
The simple regression model states that for k ∈ U,

Eξ(Yk) = β1 + β2xk (7.8)

Vξ(Yk) = σ2 (7.9)

where β1, β2 and σ are unknown parameters. We have x′
k = (1, xk), Σ = diag(σ2) and the

parameters β1 and β2 are estimated under the model ξ by

(
β̂1

β̂2

)
= (X ′

NΣ−1XN )−1X ′
NΣ−1Y N

where

X ′ = (x1, . . . ,xN ) =

(
1 1 . . . 1
x1 x2 . . . xN

)
We have

(X ′
NΣ−1XN )−1 =

σ2

N
∑

U (xk − xU )2

( ∑
U x2

k −tx
−tx N

)
and

X ′
NΣ−1Y N =

1
σ2

(
ty∑

U xkyk

)
which give

β̂1 = yU − β̂2xU

β̂2 =
∑

U (xk − xU )(yk − yU )∑
U (xk − xU )2
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These parameters are estimated using the sampling design p by(
β̂1s

β̂2s

)
=

 ỹs − β̂2sx̃s∑
s(xk − x̃s)(yk − ỹs)/πk∑

s(xk − x̃s)2/πk


for ỹs =

∑
s yk/πk

N̂
, x̃s =

∑
s xk/πk

N̂
and N̂ =

∑
s

1
πk

.

Result 23 The regression estimator of the total is

t̂yr = N
[
ỹs + β̂2s(xU − x̃s)

]
.

The approximative variance is obtained for

Ek = yk − yU − β̂2.

The variance estimator is obtained for

eks = yk − ỹs − β̂2s(xk − x̃s) and

gks =
N

N̂

[
1 + (xk − x̃s)

xU − x̃s

S̃2
xs

]
.

7.2 Calibration technique

Until now, no use of auxiliary information was made. Or, in sample survey auxiliary information
on the finite population is often used to improve the precision of estimators of the population
total. Several approaches are conceivable. We have the calibration approach described below,
which does not rely explicitly on a model with the more recent the model-calibration approach,
or the model-assisted approach described in the next section and when the inference is based
upon a model of superpopulation taking into account at the same time the sampling design. We
present in the next the principles of the calibration approach developed by Deville & Särndal
(1992) and Deville, Särndal & Sautory (1993) and the implementation of this method in Calmar.

The objective is the estimation of the population total of the variable of interest Y denoted
ty =

∑
U

yk in the presence of univariate or multivariate auxiliary information for which the only

request is that we know its population total, namely we do not need to know the value taken
by an auxiliary variable for all the units in the population.

Let X1, . . . ,Xq be q auxiliary variables and for k ∈ U and let xk = (xk1, . . . , xkq)′ be the
q-vector with the values of the auxiliary variables for the k-th element in the population. We
suppose that the total tx =

∑
U

xk is known; the vector (xk, yk)′ is observed for all k ∈ s. Let

t̂yπ =
∑

s

yk

πk
be the π-estimator of ty and we note with dk =

1
πk

the π-weight corresponding to

yk, for all k in s.

The calibration technique consists in finding a new set of weights {wk}k∈s which satisfies the
conditions :

1. {wk}k∈s are as close as possible to {dk}k∈s in the sense of a distance between wk and dk.
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2. {wk}k∈s satisfy the calibration equations:∑
s

wkxk = tx

which means that the new weights must estimate well the auxiliary information.

The calibrated estimator is denoted by t̂yw, so that it is related with the wk weights. We
consider a function distance Gk(w, d) such that :

1. for every fixed d > 0, Gk(w, d) > 0 , differentiable with respect to w , strictly convex,
defined on an interval Dk(d) such that d ∈ Dk(d);

2. Gk(d, d) = 0;

3. gk(w, d) =
∂Gk(w, d)

∂w
is continuous and the function that transforms the interval Dk(d) in

Imk(d) is one-to-one fashion.

The request that wk would be as close as possible to dk is equivalent to minimize the average
distance Ep{

∑
s Gk(wk, dk)}. Deville & Särndal (1992) apply the Lagrange multipliers method

which leads to the following weights, called calibration weights:

wk = dkFk(x′kλ)

where Fk(0) = 1, qk = F ′
k(0) > 0, dkFk is the reciprocal mapping of gk(., dk) and λ =

(λ1, . . . , λj , . . . , λq)′ is the vector of Lagrange multipliers. We determine λ from the calibra-
tion equations :

tx =
∑

s

wkxk =
∑

s

dkFk(x′kλ)xk.

Deville & Särndal (1992) suppose conditions which ensure that the above equation has a unique
solution belonging to C = ∩k∈U{λ : x′kλ ∈ Imk(dk)} with a probability tending to one. With λ

determined, we can write the calibration estimator for ty :

t̂yw =
∑

s

wkyk =
∑

s

dkFk(x′kλ)yk.

Several remarks on the derivation of the calibration estimator must be made:

1. The vector λ is determined solving the calibration system:

φs(λ) = tx − t̂xπ where

φs(λ) =
∑

s

dk{Fk(xk
′λ)− 1}xk.

Deville & Särndal (1992) propose Newton’s algorithm for obtaining λ, assuring that this method
converge quickly.

2. Different choices of the distance function lead to different estimators. The most important
case is Fk(u) = 1 + qku when we obtain the generalized regression estimator:

t̂yreg =
∑

s

wkyk = t̂yπ + (tx − t̂xπ)′β̂s
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where t̂xπ =
∑

s dkxk (respectively t̂yπ) is the π-estimator for the total of xk (respectively of Y)
and

β̂s =

(∑
s

dkqkxkxk
′

)−1∑
s

dkqkxkyk.

Focusing on the weights, the calibration technique leads to the same generalized regression esti-
mator obtained by Särndal (1980) when a regression of Y through the X1, . . . ,Xq was considered.
So, we have two different approach, the calibration technique and the regression, which leads to
the same estimator.

3. With the assumption that a solution λ exists, the different choices for Fk can lead to
negative weights, which are not desired for an estimation of the variance. Deville & Särndal
(1992) modify properly the function Fk such that the resulting weights are positive.

Suppose now that n, N →∞ and :

• (C1) lim N−1tx < ∞;

• (C2) N−1(t̂xπ − tx) → 0 in design probability ;

• (C3) n
1
2 N−1(t̂xπ − tx) converges in distribution to N(0, A);

• (C4) max ||xk|| = M < ∞;

• (C5) maxF ′′
k (0) = M ′ < ∞.

We have the following result:

Result 24 (Deville and Särndal 1992): Under the supposed conditions, t̂yw has the following
properties :

1. t̂yw is design-consistent and at least asymptotically design-unbiased (ADU)

N−1(t̂yw − t̂yπ) = Op(n−
1
2 )

if there exists a solution λ of the calibration equations.

2. t̂yw is asymptotically equivalent to the regression estimator t̂yreg for any Fk that satisfies
the condition (C5) from above.

N−1(t̂yw − t̂yreg) = Op(n−1)

and consequently V (t̂yw) ' V (t̂yreg).

From the second point, it results that the choice of Fk is not of great importance for the derivation
of the variance of t̂yw because all the estimators are asymptotically equivalent with the regression
estimator. This result has important consequences on the derivation of the variance and variance
estimation of t̂yw. We have :

V (t̂yw) ' V (t̂reg) =
∑
U

∑
U

∆kl(dkEk)(dlEl)
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where Ek = yk − x′kβ̂ and β̂ = (
∑

U qkxkx′k)−1∑
U qkxkyk. To estimate the variance, we need

an estimator for β̂, which is given by :

β̂ws =

(∑
s

wkqkxkx′k

)−1(∑
s

wkqkxkyk

)

and then
V̂ (t̂ws) =

∑
s

∑
s

∆kl

πkl
(wkek)(wlel)

where ek = yk − x′kβ̂ws.

In conclusion, we can summarize the following:

1. For a sample s and for chosen Fk, we solve the calibration equation for obtaining λ.

2. When λ is determined, we derive the calibration estimator:

t̂yw =
∑

s

wkyk =
∑

s

dkFk(x′kλ)yk.

3. The variance estimate is equal to the variance estimate for the regression estimator, with
the residuals ek of Y on the calibrated variables:

V̂ (t̂ws) =
∑

s

∑
s

∆kl

πkl
(wkek)(wlel)

7.2.1 Calibration method with CALMAR

The emphasis in this section is on improving estimates in the presence of auxiliary information
by using regression models. In this case, the only requirement about the auxiliary information is
that the population total must be known. When the value of an auxiliary variable for each unit
in the population is known, more complex models may be used. A model of regression as studied
above will improve our estimate if it reduces its variance. This is achieved if the population fit
residuals Ek = yk − x′kβ̂ are small, namely that it exists a strong linear relationship between
the variable of interest and the auxiliary variable. On the contrary case, the variance could be
large. This justifies the use of more general models, as the nonparametric ones. We study in
more details this situation in the following.


