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Abstract

The ridge regression is a biased estimation method used to circumvent the instability in
the regression estimators obtained by ordinary least squares method in the presence of mul-
ticollinearity. This method has been used in survey sampling in order to cope with negative
or extremely large weights resulted when a very large number of calibration or balancing con-
straints was imposed. In this paper, we give a review and some new interpretations of the
ridge-type estimators in a survey sampling framework.

Key Words: calibration, model-based estimators, model-assisted estimators, multicollinearity,
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1 Introduction

Regression techniques are widely used in practice due to their large and ease applicability. They

are based on ordinary least squares method. Nevertheless, in presence of multicollinearity of data,

this estimator can have extremely large variance even if it has the desirable property of being

the minimum variance estimator in the class of linear unbiased estimators (the Gauss-Markov

theorem). Biased estimators have been suggested to cope with problem and the ridge regression is

one of them. Hoerl and Kennard (1970) suggest in a seminal paper the ridge regression and show

that for suitable values of the penalty parameter, the ridge estimator has smaller mean squared

error that the ordinary least squares estimator. The method has been applied in many fields. The

book of Vinod and Ullah (1981) gives a comprehensive description on this topic as well as many

examples.

In a survey sampling setting, weighted estimators using auxiliary information are built in order

to give precise estimations about parameters of interest such as totals, means, ratio and so on.

Usually, these weighted estimators are equivalent to regression estimators but it happens that, in
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the presence of a large amount of information, the weights are very unstable, negative or very large.

Moreover, data may contain many zeros or the sample sizes may be smaller than the number of

auxiliary variables as for the small domains causing problems of matrix invertibility.

The paper is structured as follows. Section 2 recalls the construction of the ridge estimator

for the regression coefficient as introduced by Hoerl and Kennard, (1970) in a classical regression

setting. At this occasion, we give the equivalent interpretations of this estimator such as the

constrained minimization problem and the Bayesian point of view. The ridge estimator depends on

a penalty parameter that controls the trade-off between the bias and variance of the estimator. We

recall briefly the ridge trace as a method to find the penalty parameter. Section 3 gives a detailed

presentation of the application of ridge principle in survey sampling. This presentation includes the

derivation of the penalized estimators under the model-based approach given in section 3.1 as well as

under the calibration approach, section 3.2. Section 3.3 exhibits the partial calibration or balancing.

When we attribute a prior on previous estimations, we may use the Bayesian interpretation to

construct ridge regression type estimator. Deville (1999) considered it as a calibration on an

uncertain source. We describe it in section 3.4. Finally, section 3.5 gives the statistic properties of

the class of penalized estimators and we finish by concluding remarks and some further work.

2 Ridge regression

Let X = (X1, . . . ,Xp) be a n × p matrix of standardized known regressors Xi = (Xki)nk=1 for all

i = 1, . . . , p. Consider the following linear model,

y = 1′nβ0 + Xβ + ε, (1)

where y = (yk)nk=1 is the n× 1 vector of observations and ε = (εk)nk=1 is the n× 1 vector of errors.

We assume that X is a non-stochastic matrix of regressors with X′X of full rank matrix (i.e the

rank of X is p). We suppose also that the errors εk are independent with zero mean and variance

Var(εk) = σ2 for all k = 1, . . . , n.

The ordinary least squares (OLS) estimator β̂ of β minimizes the error sum of squares (ESS),

ESS = (y −Xβ)′(y −Xβ)

yielding the following estimator,

β̂OLS = (X′X)−1X′y.
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2.1 Multicollinearity, ill-conditioning and consequences on the OLS estimator

Zero or no dependence among the explanatory variables is one of the assumptions of classical linear

regression model. The subject of multicollinearity is widely referred to the situation where there is

either exact or approximately exact linear relationship among the explanatory variables (Gujarati,

2002).

Gunst and Mason (1977) discriminate between the existence and the degree of the multicollinear-

ity found in the auxiliary variables. They state that the closer the linear combinations between

the columns of X are to zero, the stronger are the multicolinearities and the more damaging are

their effects on the least squares estimator. It should be kept in mind while detecting the multi-

collinearity that the question should be of the degree/intensity of multicollinearity and not of kind

of the multicollinearity. Small eigenvalues and their corresponding eigenvectors help to identify the

multicollinearities. Let λ1, . . . , λp be the eigenvalues of X′X in decreasing order,

λmax = λ1 ≥ λ2 ≥ . . . ≥ λp = λmin > 0

and their corresponding eigenvectors V1, . . . ,Vp. If we write (Gunst and Mason, 1977),

λj = V′jX
′XVj = (XVj)′(XVj), j = 1, ..., p

we obtain that for small eigenvalues λj of X′X,

(XVj)′(XVj) ≈ 0 ⇒ XVj ≈ 0

which means that there is an approximately linear relationship between the columns of X. The

elements of the corresponding eigenvector Vj allow to identify the coefficients used in the linear

dependency.

The multicollinearity is one form of ill-conditioning. More general, a measure of ill-conditioning is

the conditioning number K given by K =
√
λmax/λmin. For λmin → 0, we have K → ∞, and so,

a large K implies an ill-conditioned matrix X.

The multicollinearity or the ill-conditioning of X have serious consequences on the OLS estimator.

The mean square error (MSE) of any estimator β̂ of β is given by

MSE(β̂) = E((β̂ − β)′(β̂ − β))
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and for the OLS estimator β̂OLS , it becomes

MSE(β̂OLS) = σ2Trace(X′X)−1 = σ2
p∑
i

1
λi

(2)

The above expression implies that the smaller the eigenvalues are, the greater are the variance of

β̂OLS and the average value of the squared distance from β̂OLS to β. This results in wider confidence

intervals and therefore leads to accept more often the Null Hypothesis (i.e. the true population

coefficient is zero). Moreover, in case of ill-conditionning, the OLS solution is unstable meaning

that the regression coefficients are sensitive to small changes in the y or X data (see Marquardt

and Snee, 1975 and Vinod and Ullah, 1981). Hoerl and Kennard (1970) discuss the case when the

least square coefficients can be both too large in absolute value and incorrect with respect to sign.

Roundoff errors tend to occur into least square calculations while X′X is computed. Obviously, any

error in X′X may be maximized during the calculations of β or any other related computations.

The danger of roundoff errors in X′X is particularly magnified when (a) the determinant of X′X

is close to zero and/or (b) X′X has the elements substantially different in order of magnitude.

Methods dealing with such data consist in (1) using priori information (Bayesian approach), (2)

omitting highly collinear variables, (3) obtaining additional or new data and (4) using ridge regres-

sion. These methods can be used individually or together depending upon the countered situation.

Our discussion however remains limited towards the ridge regression which is an important tool to

deal with multicollinearity.

2.2 Definition of the ridge estimator

Ridge regression was first used by Hoerl and Kennard (1962) and then by Hoerl and Kennard

(1970) as a solution to the biased estimation for nonorthogonal data problems. As a purpose

to control instability linked to the least squares estimates, Hoerl and Kennard (1962) and Hoerl

and Kennard (1968) suggested an alternative estimate of the regression coefficients as obtained by

adding a positive constant k to the diagonal elements of the least square estimator β̂OLS ,

β̂k = (X′X + kIp)−1X′y (3)

where Ip is the p-dimensional identity matrix. Since the constant k is arbitrary, we obtain a class of

estimators β̂k for the regression estimator β rather than a unique estimator. For k = 0, we obtain

the OLS estimator and as k →∞, β̂k → 0, the null vector.
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The relationship between the ridge estimator and the OLS estimator is given by (Hoerl and Kennard,

1970),

β̂k = (Ip + k(X′X)−1)−1β̂OLS .

Let consider again the latent eigenvalues of (X′X)−1, λ1, . . . , λp with the corresponding eigenvectors

V1, . . . ,Vp. Hence, the OLS estimator may be written as

β̂OLS =
p∑
j=1

V′jX
′y

λj
Vj .

The fact of adding a small constant to the diagonal of X′X will have as consequence the increase

of its eigenvalues with the same quantity and dramatically decrease in this way the conditioning

number K. So, the matrix X′X + kI has eigenvalues λ1 + k, . . . , λp + k with the same eigenvectors

V1, . . . ,Vp and the ridge estimator may be written as follows

β̂k =
p∑
j=1

V′jX
′y

λj + k
Vj .

The effect of the smallest eigenvalues may not be entirely eliminated by this estimator β̂k but

their effect on the parameter estimates are significantly lessened. Hoerl and Kennard (1970) show

also that for k 6= 0, the length of the ridge estimator β̂k is shorter than that of β̂OLS , namely

β̂
′
kβ̂k < β̂

′
OLSβ̂OLS .

Let study now the statistical properties of the ridge estimator. It is important to note that the

ridge estimator β̂k is a biased estimator of β unless k = 0. The bias is given by

E(β̂k)− β = −k(X′X + kI)−1β

= −k
p∑
j=1

(V′jβ)Vj

λj + k

which depends on the unknown β and on k. It appears that β̂k can be used to improve the mean

square error of the OLS estimator, and the magnitude of this improvement increases with an increase

in spread of the eigenvalue spectrum. The ridge regression comes up with the objective of developing

stable set of coefficients which will do a reasonable job for predicting future observations. Conniffe

and Stone (1973) however criticized the β̂k since its properties depend on the non-stochastic choice

of k. Hoerl and Kennard (1970) and Hoerl, Kennard and Baldwin (1975) show that an improvement
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of the MSE can be obtained using β̂k. Consider for that the MSE of β̂k,

MSE(β̂k) = σ2
p∑
j=1

λj
(λj + k)2

+ k2
p∑
j=1

(V′jβ)2

(λj + k)2

= Trace(Var(β̂k)) + (Bias(β̂k))
′(Bias(β̂k))

= A+B (4)

Theorem 1 (existence theorem, Hoerl and Kennard, 1970) There always exists a k > 0 such that

MSE(β̂k) < MSE(β̂) = σ2
p∑
j

1
λj
.

Moreover, the above inequality is valid for all 0 < k < kmax = σ2

α2
max

where αmax is the largest value

of (V1, . . . ,Vp)β.

The proof is based on the fact that the variance term A from relation (4) is a continuous, monotoni-

cally decreasing function of k and the squared bias term B is a continuous, monotonically increasing

function of k. Their first derivatives are always non-positive and non-negative, respectively. Thus,

a necessary condition to prove the theorem is to show that it always exists a k > 0 such that the

first derivative of MSE(β̂k) is non-positive. This is possible for all 0 < k < σ2/α2
max.

However, Theobald (1974) criticized the MSE criteria used by Hoerl and Kennard (1970) and sug-

gested a more general criteria. Theobald (1974) suggested minimizing the weighted mean square

error (WMSE) defined by

WMSE(β̂) = E
(

(β̂ − β)′W(β̂ − β)
)

for any non-negative definite matrix W. For W = I the identity matrix, we obtain the MSE criteria.

He showed that minimizing the WMSE, for all non-negative definite matrix W is equivalent to

minimizing the mean square error matrix (MMSE),

MMSE(β̂) = E
(

(β̂ − β)(β̂ − β)′
)
.

Theorem 2 (Theobald, 1974) The ridge estimator β̂k is better than β̂OSL in the sense that MMSE(β̂k)−

MMSE(β̂OSL) is a positive-definite matrix whatever

0 < k < k̃max =
2σ2

β′β
.
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Vinod and Ullah (1981) give a different proof for the Theobald’s result. A necessary and sufficient

condition for MMSE(β̂k)−MMSE(β̂OSL) to be a positive-definite matrix given by Swindel and

Chapman, (1973) is

0 < k < 2/[−min(0, η)]

where η is the minimum eigenvalue of (X′X)−1 − (ββ′/σ2).

The ridge trace

We can remark that the β̂k depends upon the unknown parameter k which makes it impossible to

calculate. Hoerl and Kennard (1970) suggested the ridge trace method to acquire the suitable value

for the ridge parameter k. The ridge trace is a graphical tool that plots the components of the ridge

regression coefficient β̂k versus k. It aims at finding an appropriate value of k which provides a set of

coefficients β̂k with smaller MSE than that of the least squares solution β̂OLS . The instability of the

ridge trace indicates intercorrelations among regressors arising from multicollinearity and hence, the

ridge solutions in the unstable region of ridge trace are more seriously affected by multicollinearity.

Marquardt and Snee (1975) consider the ridge trace as one of the major advantages of the ridge

regression. It is clear that this method do not yield a single automatic solution to the estimation

problem, but rather, a family of solutions. Various rules for choosing k have been suggested in the

literature (see Vinod and Ullah, 1981).

Conniffe and Stone (1973) criticized the ridge trace method because it may need iterations over

a relatively long range of k and doubt the lack of improvement of the least squares estimator via

any particular choice of k. Instead direct examination of eigenvalues may be preferred.

2.2.1 Other interpretations of the ridge regression estimator

The ridge regression estimator as a solution of a constrained minimization problem

The ridge estimator can also be seen as a solution of constrained optimization problem. Hoerl and

Kennard (1970) consider the error sum of squares due to any estimate β̃ of β,

ESS(β̃) = (y −Xβ̃)′(y −Xβ̃)

= ESS(β̂OLS) + (β̃ − β̂OLS)′X′X(β̃ − β̂OLS)

which achieves its minimum only when β̃ = β̂OLS . Relation (2) proves that on the average the
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distance between β and β̂OLS increases with the presence of ill-conditioning in X′X but without

an appreciable increase in the error sum of squares. Hoerl and Kennard (1970) therefore, require

finding the estimator β̃ of minimum length that belongs to the hyperellipsoid centered at the OLS

estimator and defined by the equation
(
β̃ − β̂OLS

)′
X′X

(
β̃ − β̂OLS

)
= Φ = constant. Figure 1

illustrate the geometry of the ridge regression when β = (β1, β2)′ is a two-dimensional parameter

(Marquart and Snee, 1975). We can remark that β̂k is the shortest vector that gives a residual sum

of squares as small as the Φ value anywhere on the small ellipse.

β̂OLS

β̂k

β2

β10

Figure 1: Geometry of ridge regression

In an equivalent way, we may minimize ESS(β̃) for a fixed length of β̃ say r. This is equivalent

to finding the ellipse contour that is as close as possible to the circle centered in zero of ray equal

to r. Using the Lagrangian principle (Izenman, 2008), the optimization problem may be presented

as

minβ̃(y −Xβ̃)′(y −Xβ̃) + k(β̃
′
β̃ − r2)

or equivalently,

minβ̃:||β̃||2≤r2(y −Xβ̃)′(y −Xβ̃) (5)

where || · || is the Euclidian norm. In order to attribute the same influence of the constraint from

(5), it is advisable to standardize the regressors. With no-standardized variable, one may use some

other norm (Kapat and Goel, 2010) or the generalized ridge regression when each diagonal element

of X′X is modified differently (Hoerl and Kennard, 1970).
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Bayesian or Mixed Regression Interpretation of Ridge Coefficients

The Bayesian approach treats the parameter β as a random variable with a prior probability

density which may be based on some subjective prior information about β. The goal is to determine

the posterior probability density of β which is done by combining the prior probability density with

the sample information given by the likelihood function. A ridge estimator can be seen also as a

Bayes estimator when β takes a suitable normal prior distribution with mean β0 and variance

covariance matrix σ2
βΩ (Vinod and Ullah, 1981, Izenman, 2008). Vinod and Ullah (1981) advocate

that the Bayesian interpretation of the ridge regression coefficient β̂k implies deriving the prior

distribution of β for which β̂k is the posterior mean. They also state that the Bayesian methods

imply that the posterior mean is the optimal estimator when using the MSE as expected loss. We

consider the model given in (1) with the following supplementary assumptions: the errors ε are

normally distributed with mean zero and variance covariance matrix σ2Ip with σ2 a known constant

and Ip is the p dimensional identity matrix. In other words, y is normally distributed N(Xβ, σ2Ip).

We suppose that the prior normal distribution on β is also normal with known mean β0 and known

variance σ2
βΩ. The posterior density of β is therefore normal with mean β∗ as follows

β∗ = (X′X + αΩ−1)−1(X′Xβ̂OLS + αΩ−1β0) (6)

= β0 + (X′X + αΩ−1)−1X′X(β̂OLS − β0) (7)

of variance covariance matrix given by σ2Ω∗ = σ2(X′X + α2Ω−1)−1 and α = σ2/σ2
β is the ratio

of the variances. Relations (6) or (7) show that if the prior information is useless, i.e. σ2
β → ∞,

then α → 0 and β∗ = β̂OLS . On the other hand, for σ2
β → 0, we have β∗ = β0. Vinod and Ullah

(1981) remark that the estimator β∗ given by formula (6) may be written as a weighted matrix

combination of the OLS or the maximum likelihood estimator β̂OLS and the prior mean β0,

β∗ = Aβ̂OLS + (Ip −A)β0 (8)

where A is given by

A =
(

Var(β̂OLS)−1 + αVar(β0)−1
)−1

Var(β̂OLS)−1 (9)

= Ip −Var(β̂OLS)
(

Var(β̂OLS) + α−1Var(β0)
)−1

(10)

So, the normalized weights for β̂OLS and β0 are given by the precision matrix. The same result is

obtained if one desires to compute the best estimator from the minimum variance point of view of
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β being a matrix combination of β̂OLS and β0 namely,

A = argminÃVar
(
Ãβ̂OLS + (Ip − Ã)β0

)
One can remark from (6), that for Ω = k−1Ip and β0 = 0, we get the ordinary ridge estimator

β̂k given by (3). As Vinod and Ullah (1981) remarked, some Bayesians feel that this prior is

unrealistic and a non null prior mean should be used but in absence of prior knowledge on β0, it

is often conservative to shrink towards the zero vector. When a prior knowledge about β0 exists,

then one shrinks the ridge estimator toward this known prior. Nevertheless, the drawback is that

different choices of the prior lead to different ridge estimators.

It is worth mentioning that the Bayes estimator of β given by (7) corresponds to the estimator

of the regression coefficient for the mixed regression model (Vinod and Ullah, 1981 ),

y = Xβ + ε

β = β0 + η

with E(η) = 0 and Var(η) = σβΩ. Conditionally on β0, the value of β∗ given by (6) is then

obtained by minimization with respect of β of

1
σ2

(y −Xβ)′(y −Xβ) +
1
σ2
β

(β − β0)′Ω(β − β0)

Even if the two approaches lead to the same solution, the interpretations are different. In the

Bayesian model, β is a random variable, whereas in the mixed regression model it is not.

We have supposed in this section that the regressors Xj , for j = 1, . . . , p are standardized

and the vector of errors ε is homoscedastic. With heteroscedasticity in the model (1), namely for

Var(ε) = σ2V , where V = diag(v2
1, v

2
2, . . . , v

2
n) is the known positive definite variance-covariance

matrix, one can easily transform the heteroscedastic model into a homoscedastic one by multiplying

the model (1) by a matrix G satisfying the condition G′G = V −1. Trenkler (1984) discusses

the performance of biased estimators in the linear regression model under the heteroscedasticity

assumption.

In what concerns the standardization of the regressors, the problem is more delicate and it

is not always very obvious when one should standardize the X-variables. The standardization is

not necessary for most theoretical results (Vinod and Ullah, 1981). However, it is advisable to
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standardize data before computing the ridge estimator specially when there are large variations

between regressors and they are measured in different scales. An additional advantage of the

standardization is that it makes the numerical magnitude of the components of β comparable with

each other. As Kapat and Goel (2010) remarked, different solutions for the ridge estimator β̂k may

be obtained depending on the nature of the regressors, standardized or not, and on the constrained

norm. Thus, it is important to distinguish between the solutions of these problems in order to

avoid confusion.

3 Use of ridge principle in surveys

In this section, we undertake a detailed presentation of the use of ridge principle in survey sampling

setting. Even if results are somewhat similar, the way they are derived is different from the classical

statistics and this is mostly due the fact that in survey sampling framework, the main goal is to

make inference about a function of y and not on the vector y or equivalently on the regression

coefficient, β. The simplest case, which will be considered here, is the estimation of the finite

population total

ty =
∑
k∈U

yk

of the variable of interest Y of values yk. Here, U denotes a finite population containing N elements,

U = {a1, . . . , ak, . . . , aN} = {1, . . . , k, . . . , N}

with the supposition that a population unit is identifiable uniquely by its label k. Furthermore, a

sample s of size n is selected from U and the vector y is known only on the sample individuals.

Usually, the finite population total ty is estimated by a weighted estimator t̂w,

t̂w =
∑
s

wkyk (11)

where the weights wk are derived usually using auxiliary information by means of a superpopulation

model (model-based or model-assisted approach) or by calibration. Usually, with multipurpose

surveys, weights should not depend on the study variable in order to estimate means or totals of

a very large number of variables. They should also be positive and depend only on the auxiliary

information. The weights necessarily should produce internally consistent estimators and if they

are suitably chosen, these weights will produce estimators with smaller variance than the estimators

without using the weights.
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The idea of ridge estimation was used for the first time in a survey sampling framework in

order to eliminate negative or extremely large weights obtained when a too restrictive condition of

unbiasedness was imposed. The latter situations may cause inefficient results rather than improving

the estimators. So, weights are crucial in survey sampling theory. From (11), the weights vector

ws = (wk)k∈s is the unknown parameter to be found. The role of β is taken now by ws. In sections

3.1 and 3.2 we give in detail the derivation of ridge weights in survey sampling as solutions of

penalized optimization problems (section 2.2.1). The same estimators may be obtained by using

a superpopulation linear model depending on a parameter and the class of model-based or model-

assisted estimators for the finite population totals. This way of computing ridge estimators in

survey sampling is the direct application of ridge principle from the classical regression described

in section 2.2 and we present it below. When we attribute a prior on previous estimations, we

may use the Bayesian interpretation to construct ridge regression type estimator. Deville (1999)

considered it as a calibration on an uncertain source. We describe it in section 3.4.

Suppose that the relationship between the variable of interest Y and the auxiliary variables

X1, . . . ,Xp is given by a superpopulation model denoted by ξ in the survey literature:

ξ : y = Xβ + ε. (12)

The explicative variables are not standardized now. In order to distinguish the population from the

sample, let y = (y1, . . . , yN )′ be a N × 1 vector of and let X = (X1, . . . ,Xp) be the N × p matrix

with x′k = (Xk1, . . . , Xkp) as rows. The errors εk, for all k ∈ U are independent one of each other,

of mean zero and variance Var(εk) = σ2v2
k. Let Varξ(ε) = σ2V with V = diag(v2

k)k∈U and vk are

positive known constants.

Some further notations are needed. Let Xs = (x′k)k∈s, respectively ys = (yk)k∈s, be the restriction

of X, respectively of y, on the sample s. Let also Varξ(εs) = σ2Vs be the variance of εs, the

restriction of ε on the sample s, and Varξ(εs) = σ2Vs be the variance of εs, the restriction of ε on

s = U − s. The population variance V may be written as

V =
(

Vs 0n×(N−n)

0(N−n)×n Vs

)
Without auxiliary information, ty is estimated by the Horvitz and Thompson (1952) estimator

given by

t̂y,d =
∑
s

dkyk =
∑
s

yk
πk

(13)
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where πk is the first order inclusion probability of the individual k ∈ U. The model (12) is then

used to improve the estimation of t̂y,d by taking into account the auxiliary information given by

X1, . . . ,Xp.

Using the model ξ, one estimate the regression parameter β and after, plugs-in a model based

estimator, abbreviated as MB below,

t̂MB =
∑
s

yk +
∑
U−s

x′kβ (14)

or in a generalized difference estimator, abbreviated as DIFF below,

t̂DIFF =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β. (15)

This means that t̂MB and t̂DIFF rely on the estimation of the regression coefficient β : best

linear unbiased estimator of β for the MB (Royall, 1976) and the best design-based estimator of β

for the MA (Särndal, 1980).

In a model-based setting and using the generalized least squares (GLS) estimation under the

model ξ, the estimator of the regression coefficient β is obtained as solution of the optimization

problem

(P1) : β̂GLS,s = argminβ(ys −Xsβ)′V−1
s (ys −Xsβ) (16)

yielding the estimator β̂GLS,s = (X′sV
−1
s Xs)−1X′sV

−1
s ys assuming that (X′sV

−1
s Xs)−1 exists.The

best linear unbiased estimator (BLUE) of ty from the ξ-variance point of view is given by (Roy-

all,1976)

t̂BLUE =
∑
s

yk +
∑
U−s

x′kβ̂GLS,s (17)

If the matrix X′sV
−1
s Xs has eigenvalues close to zero, then it is advisable to perturb its diagonal

before inverting it. We obtain the ridge estimator of β as follows

β̂MBR,s =
(
X′sV

−1
s Xs + D

)−1 X′sV
−1
s ys

where D is a p×p diagonal matrix with positive quantities on the diagonal. The ridge MB estimator

given in (14) becomes
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t̂MBR =
∑
s

yk +

(∑
U−s

x′k

)
β̂MBR,s (18)

A similar reasoning may be used in a design-based approach. The design-based estimator β̂π of

the regression coefficient β is the solution of the following optimization problem (Särndal, 1980),

(P2) : β̂π = argminβ(ys −Xsβ)′V−1
s Π−1

s (ys −Xsβ)

where Πs = diag(πk)k∈s. This optimization problem yields the following estimator for β,

β̂π =
(
X′sV

−1
s Π−1

s Xs

)−1 X′sV
−1
s Π−1

s ys

and the total ty is estimated by the well known GREG estimator (Särndal, 1980),

t̂GREG =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β̂π. (19)

The ridge estimator of β becomes

β̂π,R =
(
X′sV

−1
s Π−1

s Xs + D̃
)−1

X′sV
−1
s Π−1

s ys (20)

for some positive diagonal matrix D̃ and plugging-in (15), we obtain

t̂GREG,R =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β̂π,R. (21)

The ridge estimator of β is ξ-biased but is more stable in presence of multicollinearity.

3.1 Ridge regression under the model-based approach

Bardsley and Chambers (1984) explored the relationship between the unbalanced samples and

multicollinearity. We call a balanced sample a sample for which the following relation is satisfied∑
s

wkxk =
∑
U

xk.

On the opposite situation, we have an unbalanced sample. As Bardsley and Chambers (1984) stated,

in multipurpose sample surveys for which a large number of finite population totals or means are to

be estimated, it is very difficult or even impossible to have a fully specified model underlying each

variable. In such situations, balanced sampling may protect from model misspecification (Royall
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and Herson, 1973).

In the model-based setting for unbalanced sample, exclusion of variables may increase the bias

and inclusion of too many variables may result in a overspecified model and the estimates will

be unstable and inefficient even if they are unbiased. Also these variables can linearly be related

with each other, and hence can cause multicollinearity. The strategy suggested by Bardsley and

Chambers (1984) is to consider as many variables as they exist but to relax the balancing condition

which is in fact the unbiasedness condition of the estimator under the model. This is equivalent to

deriving a biased estimator but with a smaller prediction error and this is why, it leads naturally

to a ridge type estimator.

Bardsley and Chambers (1984) suggest finding the weights ws = (wk)k∈s such that the weighted

estimator t̂w =
∑

swkyk has minimum ξ-mean squared error among the class of bounded biased

estimators,

(P3) : wMB,R = argminws
(ws − 1s)′Vs(ws − 1s) + B′CB (22)

where B =
∑

swkxk −
∑

U xk is the ξ-bias of t̂w, C is some diagonal cost matrix and 1s is the

n-dimensional vectors of ones. The equality B = 0 means that the estimator t̂w is ξ-unbiased or

that the design is exactly balanced. The optimization problem (P3) given by (22) means that we

look for weights wk that explain the best the vector 1s according to a specific metric and such that

the weighted estimator is not very far away from the true total. The metric employed here uses

the sample variance Vs as we are in the case of a model-based approach.

The minimization problem from above can also be written as

(P3’) : wMB,R = argminws,||B||2C≤r2
(ws − 1s)′Vs(ws − 1s)

for the norm ||B||2C = B′CB which means that we penalize large values of the bias B. Solving this

minimization problem, we obtain the weights wMB,R given by

wMB,R = 1s −V−1
s Xs

(
X′sV

−1
s Xs + C−1

)−1 (1′sXs − 1′UX)′ (23)

leading to the model-based ridge estimator t̂w,MB = w′MB,Rys,

t̂w,MB =
∑
s

yk +

(∑
U−s

x′k

)
β̂w,R (24)
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with β̂w,R =
(
X′sV

−1
s Xs + C−1

)−1 X′sV
−1
s ys. Remark that we obtain an estimator similar to the

one obtained in (14).

We have mentioned before that the weight vector ws takes in a way the place of the regression

coefficient β. We have seen in section 2.2 that introducing a penalty parameter reduces the length

of β. The same result is true for the weight vector (Bardsley and Chambers, 1984). Consider the

particular case Vs = In and C−1 = kIp,

w′MB,RwMB,R ' 1′UX(X′sXs + kIp)−1X′sXs(X′sXs + kIp)−1X′1U

=
p∑
j=1

η2
i

λi
(λi + k)2

where λi, i = 1, . . . , p are the eigenvalues of X′sXs, η = (ηi)
p
i=1 = PX′1U and P is the matrix of

eigenvectors associated to the eigenvalues of X′sXs. Following the same arguments, we obtain that

w′MBwMB ' 1′UX(X′sXs)−1X′1U =
p∑
j=1

η2
i

1
λi

Since for any k > 0, we always have 1
λi
> λi

(λi+k)2
, we get that w′MB,RwMB,R < w′MBwMB. This

proves that the scatter of ridge weights is smaller and more stable under perturbation of Xs than

that of BLUE weights. This is in concordance with the ridge principle. We can see also that in

the presence of multicollinearity, respectively of ill-conditionning, λmin = minλi are close to zero,

respectively the conditionning number K =
√
λmax/λmin is very large, which entails negative or

extremely large calibration weights.

It is worth mentioning two extreme values of t̂w,MB. As C → ∞ (i.e. infinite cost associated

with the bias B), we obtain wMB,R = 1s − V−1
s Xs

(
X′sV

−1
s Xs

)−1 X′sV
−1
s ys and t̂w,MB is the

minimum variance unbiased linear estimator (Royall, 1970). This means that the constraint B = 0

is exactly satisfied. On the opposite case, as C → 0, we obtain wMB,R = 1s and t̂w,MB =
∑

s yk

which is equivalent to removing the constraint from the optimization problem.

The derivation of model-based ridge estimator depends on the cost matrix C. Considering that

C = k−1C∗, Bardsley and Chambers (1984) and Chambers (1996) use the ridge trace to determine

the appropriate k. C∗ is a fixed cost matrix providing a correct relative weighting of the components

of the relative bias vector (diag(X′1U ))−1B. This transformation was needed because of the large

differences in scale between the predictors in X and it is a kind of standardization of variables.
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3.2 Ridge under the calibration approach or penalized calibration

Without assuming a superpopulation model, one can use the calibration method (Deville and

Särndal, 1992) which consists in deriving a weighted estimator

t̂w =
∑
s

wkyk

with weights minimizing a pseudo-distance, subject to calibration constraints (i.e. all the auxiliary

variable totals are exactly estimated). Usually a chi-square distance is used,
∑

s
(wk−dk)2

dkqk
, yielding

the calibration weights wc
s = (wck)k∈s

(P4) : wc
s = argminws

(ws − ds)′Π̃s(ws − ds) subject to (wc
s)
′Xs = 1′UX

where Π̃s = diag(q−1
k d−1

k )k∈s and qk are positive constants. Most of the times, we consider qk = 1

for all k. The calibration weights thus get the following shape,

wc
s = ds − Π̃

−1

s Xs(X′sΠ̃
−1

s Xs)−1(d′sXs − 1′UX)′

For qk = 1/v2
k, the calibrated estimator t̂yw = (wc

s)
′ys is equal to the GREG estimator given by

(19). Moreover, remark that in this case we have Π̃s = VsΠs, which means that the optimization

problem (P2) uses the inverse of the weight matrix employed in (P4). For a more general distance

function, Deville and Särndal (1992) show that under certain conditions the calibrated estimator

is asymptotically equivalent to the model-assisted or GREG estimator t̂GREG. This equivalence is

in the sense that N−1(t̂yw− t̂GREG) = Op(n−1). This fact will consequently lead to the asymptotic

equivalence of the variances of both estimators.

From a geometrical point of view, we search the weights wk which explain the best the Horvitz-

Thompson weights dk = 1/πk and that lie in the orthogonal of the constraint space given by the

kernel of the matrix Xs. The constraint space is of dimension n−p, so increasing the number of aux-

iliary variables will decrease the number of degrees of freedom for wk (Guggemos and Tillé, 2010).

The similar reasoning by Silva and Skinner (1997) proved that by increasing the number of calibra-

tion variables after a certain number may increase the variance up to a harmful level. Guggemos

and Tillé (2010) called it over-calibration and suggested not calibrating on those variables which

are less correlated with the variables of interest.

Another issue with the calibration weights is the fact that they may not satisfy range restrictions

(i.e. pre-specified lower and upper bounds) especially when the number of calibration or benchmark
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constraints is large. Satisfying such condition is desirable especially for avoiding the inflation of

the sampling error of estimates in small to moderate domains (Beaumont and Bocci, 2008). As

Deville and Särndal (1992) stated, negative weights may occur when the chi-squared distance is

employed. For the other distances used in their paper, the positiveness of weights is guaranteed

but unrealistic or extreme weights may also occur. To cope with this issue, several modifications

have been suggested in the literature. However, all these methods are iterative and may not yield

a solution even if the range restriction are mild (Rao and Singh, 1997 and Beaumont and Bocci,

2008). This is more likely to happen when they are many constraints, and so multicollinearity of

data, or when the sample size is small.

So, how to avoid negative or extremely large weights? Chambers (1996) and Rao and Singh

(1997) answer this question by suggesting to relax the calibration constraints. Suppose we have

non-negative constants Cj with j = 1, ..., p representing the cost of the weighted estimator which

does not satisfy the calibration equation. The cost Cj can also be the cost of the risk associated

with the calibration equation not to be satisfied. The objective function can be given as,

(P5) : wc
R,s = argminws

(ws − ds)′Π̃s(ws − ds) +
1
λ

(w′sXs − 1′UX)C(w′sXs − 1′UX)′ (25)

Rao and Singh (1997) consider the objective function without the constant λ. Writing the problem

(P5) as a constrained optimization problem, puts into evidence that we lessen the calibration

equation corresponding to those variables which are somehow unable to satisfy the calibration

constraints but not too much since we penalize the large values of w′sXs − 1′UX. In this way we

eliminate the possibility of having very large or negative weights. Simply, we can say that the ridge

estimator performs as a variable selection tool.

The weights are given by

wc
R,s = ds − Π̃

−1

s Xs(X′sΠ̃
−1

s Xs + λC−1)−1(X′sds −X′1U ) (26)

which yield the ridge calibration estimator or the penalized calibration of the population total ty,

t̂y,Rw = (wc
R,s)

′ys = d′sys − (X′sds −X′1U )′β̂λ

= t̂y,d −
(
t̂x,d − tx

)′
β̂λ (27)

where β̂λ = (X′sΠ̃
−1

s Xs + λC−1)−1X′sΠ̃
−1

s ys and t̂x,d is the Horvitz-Thompson estimator for the

total tx. This approach is equivalent to construct a GREG estimator of population total with the
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regression coefficient estimated by a ridge estimator (Hoerl and Kennard, 1970). More precisely,

β̂λ is in fact β̂π,R from (20) for λC−1 = D̃ and Π̃
−1

s = V−1
s Π−1

s .

The ridge estimator given by (27) can be written as a linear combination of the Horvitz-Thompson

estimator and the GREG estimator (Rao and Singh, 1997) as follows,

t̂y,Rw = (1− α)t̂y,d + αt̂GREG

where t̂GREG,R = t̂y,d −
(
t̂x,d − tx

)′
β̂π is the GREG estimator given by (19) and α is given by,

α = y′sΠ̃
−1

s Xs

(
X′sΠ̃

−1

s Xs + λC−1
)−1

(tx − t̂x,d)
[
y′sΠ̃

−1

s Xs

(
X′sΠ̃

−1

s Xs

)−1
(tx − t̂x,d)

]−1

As for the model-based approach, the Horvitz-Thompson as well as the GREG estimator are two

limit values of t̂y,Rw. More exactly, consider relation (27) for a fixed cost matrix C and let λ vary

from 0 to ∞. The ridge calibration estimator is a continuos function of λ. For λ = 0, then α = 1

and an infinite cost is attributed to all constraints meaning that they are all exactly satisfied. It

implies that t̂y,Rw is the GREG estimator which is ξ-unbiased for the population total ty. Ridge

weights with strictly positive biasing parameter λ means that the weights do not satisfy exactly the

calibration equations. In this case, the estimator t̂y,Rw is ξ-biased but the weights wc
R,s are more

stable (Chambers, 1996) and implied a reduction in MSE (Bardsley and Chambers, 1984 ). Values

of λ producing weights larger or equal to 1 are accepted by Chambers (1996).

As λ→∞, α→ 0 and the ridge calibrated estimator t̂y,Rw goes to the Horvitz-Thompson estimator.

In this case, we do not use any of the auxiliary variables for the estimation of the finite population

total of the variable of interest.

It is of interest to see how t̂y,Rw changes when a specific cost Cj varies from 0 to ∞. The zero

cost Cj = 0 means that the constraint corresponding to the total tXj is discarded and the large

or infinite cost Cj = ∞, that the corresponding calibration constraint is exactly satisfied. In the

latter situation, the weights are computed using (25) with the cost matrix C−1 having 0 on the

j-th diagonal element.

Using the same justifications given by Hoerl and Kennard (1970) for obtaining the ridge re-

gression coefficient as a solution of constrained minimization (see section 2.2.1), the weights wc
R,s
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satisfying the optimization problem (P5) satisfy also the following optimization problem,

(P6) : wc
R,s = argminws

(w′sXs − 1′UX)C(w′sXs − 1′UX)′ + λ(ws − ds)′Π̃s(ws − ds)

= argminws,||ws−ds||2eΠs
≤r2(w′sXs − 1′UX)C(w′sXs − 1′UX)′

which means that we find the smallest distance between the weighted estimator t̂y,Rw and the

total ty with weights satisfying the range restrictions. The geometric interpretations are some-

how similar to those given in section 2.2.1 and using Figure 1. Beaumont and Bocci (2008) give

another justification of this result and suggest a bisection algorithm to find wk knowing that the

maximum value of (w′sXs − 1′UX)C(w′sXs − 1′UX)′ is reached for ws = ds while satisfying the

range restrictions. The minimum value is reached for the GREG estimator but without respecting

necessarily the restriction on ws. Nevertheless, as Beaumont and Bocci remarked, this algorithm

may be time-consuming.

3.3 Partially penalized ridge or partially penalized calibration

In a model based approach, Bardsley and Chambers (1984) suggested to divide the p variables in

the data matrix X into two sets of variables X̃1 and X̃2 based on the fact that variables in X̃1

contain much more importance than the variables in X̃2 in the sense that they can contribute

more influentially in the estimation process. We may consider that the matrix X has the following

expression after re-ordering the variables X1, . . . ,Xp,

X =
(
X̃1, X̃2

)
where X̃1 = [X1, . . . ,Xq] and X̃2 = [Xq+1, . . . ,Xp]. The variables contained in X̃1 may be related

for example to socio-demographic criteria. Bardsley and Chambers (1984) attach the importance

to the variables in terms of cost which are in fact penalties associated to the variables. Let C

be the diagonal matrix of nonnegative costs which can measure the acceptable level of error while

estimating the totals of variable from the X matrix,

C =
(

C1 0(q,p−q)
0(p−q,p) C2

)
where C1, respectively C2, is the relative diagonal cost matrix of size q × q associated to X̃1,

respectively of size (p− q)× (p− q) associated to X̃2.

As discussed in the above section, allowing an infinite cost Cj means that the associated constraint is
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exactly satisfied. Bardsley and Chambers (1984) consider the case when constraints corresponding

to X1, . . . ,Xq are all exactly satisfied. This means C1 = ∞ and hence, weights may be derived

using relation (23) with C−1
1 = 0(q×q). The weights using this partially penalized ridge regression

and abbreviated as wppr below can be written as,

wppr =

1s −
(
V−1
s X̃1s, V−1

s X̃2s

)( X̃′1sV
−1
s X̃1s X̃′1sV

−1
s X̃2s

X̃′2sV
−1
s X̃1s X̃′2sV

−1
s X̃2s + C−1

2

)−1(
X̃′1s1s − X̃′11U
X̃′2s1s − X̃′21U

)
(28)

where X̃1s, respectively X̃2s, is the sample restriction of X̃1, respectively of X̃2. Using a calibration

approach, the weight are derived using the above formula with Vs replaced by Π̃s and 1s by ds.

In particular, we have w′pprX̃1s = 1′UX̃1.

Now, if the cost matrix C2 also goes to infinity, then the constraints corresponding to variables in

X̃2 are also exactly satisfied. Hence, the estimator using the weights so derived is again nothing

else than the best linear unbiased estimator t̂BLUE given by (17) and derived under the model ξ

that uses the whole matrix X. Moreover, in the case C2 → 0(p−q,p−q) the variables included in X̃2

are discarded from the constraints and thus the model will include only the calibration variables

from X̃1,

wppr → w(1)
ppr = h−V−1

s X̃1s

(
X̃′1sV

−1
s X̃1s

)−1
(1′sX̃1s − 1′UX̃1)′

The penalized estimator becomes the best unbiased estimator based under the restricted model

that uses only the matrix X̃1. Since t̂BLUE based on the whole model ξ as well as on the restricted

model with X̃1 are two extreme estimators as C2 varies from∞ to 0, Bardsley and Chambers (1984)

called the estimator that uses weights wppr an interpolated estimator between the two extremes.

So, the penalized ridge estimator may be considered as a trade-off between an over-specified model

and an under-specified model.

One can show that the ridge weights wppr verifying the optimization problem (P3) with the inverse

matrix cost

C−1 =
(

0(q,q) 0(q,p−q)
0(p−q,p) C−1

2

)
(29)
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may be obtained as a solution of the following optimization problem

(P7) : wppr = argminw(ws − 1s)′V−1
s (ws − 1s) + (w′sX̃2s − 1′UX̃2)C−1

2 (w′sX̃2s − 1′UX̃2)′

w′sX̃1s = 1′UX̃1 (30)

This kind of optimization problem was used by Park and Yang (2010) and Guggemos and Tillé

(2010). Using the model ξ given by (12) with intercept, Park and Yang (2010) aim at estimating

the mean yU =
∑

U yk/N of the variable of interest Y using a Hajek-type estimator. This means

that they use a weighted estimator with weights that sum up to unity and being as close as possible

to the Hajek weights,

αi =
π−1
i∑
s

1
πi

This means that the optimization problem (P7) is used with 1s replaced by αs = (αi)i∈s. They

build two partially penalized estimators. In the first case, X̃1 = 1U and in the second case,

X̃1 = (1U ,X2, . . . ,Xq). Weights may be derived using relation (28). Slightly simplified formulas

are obtained since 1′sαs − 1′U1U/N = 0.

In a linear regression context, it is not very common to consider the penalty or the cost matrix

C−1 given by (29). This is more likely to happen with a mixed model. Guggemos and Tillé (2010)

consider the following mixed model

ξ′ : y = X̃1B + X̃2u + η

and the calibration approach, namely we replace in the objective function from the optimization

problem (P7) from (30) the matrix Vs by Π̃s, respectively 1s by ds. Guggemos and Tillé consider

also that the second term of the objectif function depends on a penalty parameter and they suggest

the Fisher scoring algorithm to compute it. The value of the penalty parameter is obtained at the

convergence of the Fisher scoring algorithm. They give also application of the penalized calibration

for estimation of finite population totals in a small area context.

3.4 Calibration on uncertain auxiliary information

In presence of several extern estimations which may be considered as uncertain, Deville (1999)

suggested another construction which uses in fact the Bayesian interpretation of the ridge estimator

given in section 2.2.1. Consider that another estimation t̂x∗,d = d′sX
∗ based on the auxiliary

information X∗ is available from external sources such as previous surveys. We have also the
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current estimation based on X. We suppose that the variances of t̂x∗,d and t̂x,d are known and the

covariance between the two sources is zero. We suppose also that the covariance between t̂x∗,d and

t̂y,d is also zero. Deville looks for linear weighted estimators for ty of the form

t̂w = d′sys + (d′sX
∗
s − d′sXs)β = t̂y,d + (t̂x∗,d − t̂x,d)′β. (31)

The optimal value of the unknown parameter β is the one that minimizes the sampling variance of

t̂w. We find

βopt =
(
Var(t̂x∗,d) + Var(t̂x,d)

)−1 Cov(ty,d, tx,d)

and the same value may be derived by using a variance minimization criteria as in Montanari

(1987) plus a penalty term, namely

(P8) : βopt = argminβ(ys −Xsβ)′∆(ys −Xsβ) + β′X′∗s ∆X∗sβ (32)

where ∆ = (πij−πiπj

πij
)i,j∈U . We remark that the penalty is now on the variance of t̂x∗,d.

The estimation of ty given by (31) computed for β = βopt may be improved by replacing t̂x∗,d with

the best unbiased linear estimator of t̂x∗,d and t̂x,d. This is equivalent to determine the posterior

estimation knowing that the priori estimation given by the auxiliary information is t̂x∗,d and the

actual estimation is t̂x,d. One may use relation (8) to find the posterior estimation as

t̂optx,x∗ = (Ip −A) t̂x∗,d + At̂x,d

where A is a squared p-dimensional matrix given by

A = Ip −Var(t̂x,d)
(
Var(t̂x,d) + Var(t̂x∗,d)

)−1
.

Then, one can derive the estimator t̂opty of ty from relation (31) with t̂x∗,d replaced with t̂optx,x∗ ,

t̂opty = t̂y,d + (t̂optx,x∗ − t̂x,d)
′(Var(t̂x,d))−1Cov(ty,d, tx,d)

One can easily obtain that for yi = xi, we obtain t̂optx,x∗ or equivalently, the estimator is calibrated

on t̂optx,x∗ . If the variance covariance Cov(ty,d, tx,d) is estimated by the usual Horvitz-Thompson

estimator, t̂opty is a linear estimator in yi with weights wi given by

wi = di + (t̂x∗,d − t̂x,d)′(Var(t̂x,d))−1zidi,
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where zi =
∑

j∈s
∆ij

πij

xj

πj
. The main advantage of Deville’s construction is that it does not need to

determine a penalty parameter as it was the case before. All we need is the variance of the externe

estimation.

Deville (1999) give also a practical implementation and generalization to several external estimation.

3.5 Statistical properties of ridge estimators with survey data

Ridge-type estimators are biased estimators suggested in classical regression in order to diminish

the model mean squares error. Bardsley and Chambers (1984) affirm that the model-based ridge

estimator has smaller prediction variance than the best linear unbiased estimator t̂BLUE but they

do not give a rigorous proof. Bellhouse (1987) shows that a predictor Ŷ (1) =
∑

s yk + (N − n)µ̂(1)
s

of the finite population total ty is better than another predictor Ŷ (2) =
∑

s yk + (N − n)µ̂(2)
s with

respect to the mean square error under the model ξ and the sampling design p if, for every sample

s of fixed size n, µ̂(1)
s is better than µ̂

(2)
s in the sense that

Eξ(µ̂(1)
s − µns)2 ≤ Eξ(µ̂(2)

s − µns)2

where µns is the unknown prediction of the non sampled mean of Y. Using this result and the same

arguments as in Vinod and Ullah (1981), one can get that for any penalty constant k satisfying

0 < k < 2σ2/β′β,

EξEp(t̂w,MB − ty)2 < EξEp(t̂BLUE − ty)2

where t̂w,MB is the ridge model based estimator given by (24) for C−1 = kIp and t̂BLUE is the

best linear unbiased estimator given by (17). A necessary and sufficient condition for the ridge

estimator to be more efficient than the least squares estimator is

0 < k < 2/[−min(0, ψ)]

where ψ is the minimum eigenvalue of (X′sXs)−1− (ββ′/σ2) (Swindel, and Chapman, 1973). Dun-

stan and Chambers (1986) derived confidence intervals for finite population totals estimated using

the ridge model-based procedure and robust model-based variance estimators.

In a design-based setting, the concern is about asymptotic properties of t̂y,Rw given by (27) with

respect to the sampling design p. As Rao and Singh (1997) stated, “an important requirement while

relaxing benchmark constraints is that for given tolerance levels, the calibration method should ensure

design consistency like the generalized regression method.” The asymptotic design unbiasedness and
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consistency of t̂y,Rw are derived using the equivalence with GREG estimators even if t̂y,Rw has been

obtained as a solution of penalized calibration problems. Under broad assumptions (Fuller, 2002),

the design-based ridge estimator β̂λ of β tends in probability to βλ = (X′X + λC−1)−1X′y and

the ridge estimator t̂y,Rw is asymptotically equivalent to

t̂y,Rw ' d′sys − (X′sds −X′1U )′βλ = d′s(ys −Xsβλ) + 1′UXβλ

which implies that the t̂y,Rw is asymptotically design unbiased and consistent under abroad assump-

tions that provide the design unbiasedness and consistency of the Horvitz-Thompson estimators

d′sys and d′sXs (Rao and Singh, 1997 and Théberge, 2000). The asymptotic variance under the

sampling design may thus be deduced as being the Horvitz-Thompson variance applied to residuals

yk − x′kβλ.

4 Conclusion and extensions

In this paper, we have undertaken an overview of the applications of ridge-type estimators in

survey sampling theory. Even if the paper of Bardsley and Chambers (1984) has not received much

attention at the beginning, we assist now of an increasingly interest on this subject. This is mostly

due to the fact that nowadays, we face more and more information and this kind of issue is more

often encountered in practice than before.

To use this class of estimators, two practical issues should be treated carefully. The first one is

the computation of the penalty parameter. Several algorithms have been suggested in the literature

such as the ridge trace (Bardsley and Chambers, 1984), the Fischer scoring algorithm (Guggemos and

Tillé, 2010) or the bisection algorithm (Beaumont and Bocci, 2008). Beaumont and Bocci (2008)

compare the ridge calibration with the method of Chen et al. (2002) showing the superiority of

the ridge calibration method. Nevertheless, it would be interesting having a comparison between

all these algorithms.

Their is another important point that we would like to stress. All the papers dealing with

ridge-type estimators in survey sampling give few details about the standardization of the auxiliary

variables if any has been done. Or, as mentioned at the end of section 2.2.1, it is important to know

what kind of standardization is used since different methods lead to different ridge estimators. The

cost matrix used in the objective functions from the optimization problems (P3) and (P5) may

be interpreted as a standardization matrix.
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Finally, some other alternative methods for dealing with huge data sets must be investigated.

We mention here the lasso methods which consist in considering a penalty with the absolute value

instead of the euclidian norm. We are not aware of the existence of such application in survey

sampling. The regression on principal component analysis is another interesting alternative. This

method consists in considering the principal components of X′X which reduce the number of

auxiliary variables while keeping maximum of information. For huge survey data, Goga et al.

(2011) suggest calibration on the set of these new variables which is in general of much smaller

dimension than the initial one.
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