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U = {1, . . . , k, . . . , N} a finite population of size N

s ⊂ U a sample

n the sample size

p(s) the probability of drawing the sample s

πk = P(k ∈ s) the first-order inclusion probability, for all k ∈ U

dk = 1
πk

sampling weight of individual k

πkl = P(k & l ∈ s) the first-order inclusion probability, for all k, l ∈ U , k 6= l

∆kl = πkl − πkπl
Ik = 1{k∈s} the sample membership indicator

Y, yk study variable and its value for the k-th individual, k ∈ U

ty the finite population total of Y

Φ non-linear parameter

uk the linearized variable of Φ

X1, . . . ,Xp auxiliary variables

xTk = (xk1, . . . , xkp) the vector of auxiliary variables for the kth individual

X = (xTk )k∈U the N × p matrix of auxiliary information

Xs = (xTk )k∈s the n× p sample restriction of X

bT = (B1, . . . , Bq) B-spline basis functions with K interior knots and of order m; q = K +m
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Introduction

Ce mémoire est une synthèse de mes travaux de recherche menés ces dix dernières années sur

la théorie des sondages. Les sondages sont grandement utilisés pour la statistique publique,

lors des analyses économiques et sociales (estimation de l’impact de mesures politiques, calcul

d’indices de pauvreté, d’inégalité, ...), pour les études de marketing, mais aussi dans la statistique

environnementale et l’écologie (combien y-a-t-il d’arbres dans une forêt, la biodiversité a-t-elle

diminuée dans telle région ? ...). Plus récemment, les techniques de sondage ont trouvé des

applications nouvelles liées au développement d’instruments de mesure et de récolte automatique

des données. On peut citer l’exemple des compteurs intelligents utilisés par EDF qui permettent

de mesurer la consommation d’électricité à des pas de temps très fins (toutes les minutes) sur

des populations très grandes, plusieurs dizaines de millions de compteurs à terme. L’objectif en

théorie des sondages est à la fois d’extraire un sous-ensemble de la population, appelé échantillon,

et d’estimer, le mieux possible, à partir de ce sous-ensemble, une fonction, linéaire (total) ou

non-linéaire (quantiles, indices de pauvreté, ...), des valeurs d’une ou plusieurs variables d’intérêt

calculée sur l’ensemble de la population.

Mes travaux de recherche menés ces dernières années gravitent autours de deux grands axes.

J’ai essayé de développer

1. des nouvelles méthodes d’estimation de paramètres non-linéaires et de calcul et d’estimation

de leur variance;

2. des nouvelles stratégies d’estimation en présence de grandes bases de données pour des

objets de grande dimension.

Ces développements ont nécessité l’emploi d’outils et de résultats provenant de différentes

branches de la statistique: théorie des sondages, statistique robuste, estimation non-paramétrique,

données fonctionnelles et analyse des données. Ils sont aussi, pour la plupart, issus de col-

laborations avec des spécialistes de ces domaines et d’encadrement de travaux de thèse : Mo-

hamed Chaouch (2005-2008, co-encadrement avec Jérôme Saracco et Ali Ganoun), Muhammad-

Ahmed Shehzad (2009-2012, co-encadrement avec H. Cardot), Pauline Lardin (2010-2012, co-

encadrement avec H. Cardot) et Anne De Moliner (2013- , co-encadrement avec H. Cardot).

(1) Etude de paramètres non-linéaires

L’étude de paramètres d’intérêt non-linéaires comme par exemple, les mesures d’inégalités (in-

dice de Gini, Théil) ou les quantiles, est devenu crucial ces dernières années dans beaucoup

d’enquêtes françaises et européennes. On cherche dans un premier temps à construire un es-

timateur qui soit précis et efficace. Ensuite, vient le calcul de la variance et la construction

x
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d’un estimateur de cette variance afin d’avoir un ordre d’idée de la précision de la méthode em-

ployée et éventuellement de construire un intervalle de confiance. Je me suis d’abord intéressée

à l’estimation de ce type de paramètres dans un cadre temporel, et ensuite à l’amélioration

de ces estimateurs par la prise en compte de l’information auxiliaire à l’aide de modèles non-

paramétriques.

(a) Sondage temporel. J’ai commencé par étudier dans ma thèse l’estimation d’une combi-

naison linéaire de différents totaux lorsque les données proviennent de plusieurs échantillons.

Il s’agit par exemple de l’estimation de l’évolution dans le temps du revenu total (voir [18] et

[19] dans la liste de mes publications) en autorisant les échantillons aux deux époques à être

distincts. Pendant l’année d’ATER passée à l’Université Toulouse 1 Capitole, j’ai commencé à

travailler avec A. Ruiz-Gazen sur l’extension de ces travaux au cas d’un paramètre non-linéaire

tel que l’indice de Gini. En s’appuyant sur des outils et résultats de la statistique robuste,

nous donnons dans [11], [15] une nouvelle classe d’estimateurs ainsi qu’une méthode générale de

linéarisation qui permet, dans le cas des enquêtes sur deux échantillons (l’évolution de l’indice

de Gini entre deux périodes de temps), d’estimer la variance.

Les méthodes de réechantillonnage (jacknife, bootstrap) sont souvent préférées aux techniques

de linéarisation car elles évitent les difficultés techniques engendrées par le calcul d’un estimateur

de la variance. Leur domaine d’application est pourtant plus restrictif. Avec A. Ruiz-Gazen et

G. Chauvet, nous réalisons dans [13], une comparaison bootstrap-linéarisation et une application

à l’estimation de l’indice de Gini (voir [22]) est actuellement en révision.

(b) Modèle non-paramétrique. C’est un fait bien connu en sondage que l’usage de l’information

auxiliaire permet très souvent d’améliorer la qualité des estimateurs. J’ai proposé dans ma

thèse et publié ensuite dans [16] une nouvelle approche nonparamétrique basée sur les splines de

régression pour estimer le total d’une variable d’intérêt sur une population finie. Cette méthode

est étendue ensuite lors de l’estimation de l’évolution dans le temps d’un paramètre linéaire de

totaux ([17]) et lors de l’estimation des quantiles en population finie ([14]) en collaboration avec

Y. Aragon et A. Ruiz-Gazen. En collaboration avec A. Ruiz-Gazen, nous suggérons dans [3]

une approche générale pour prendre en compte l’information auxiliaire par des modèles non-

paramétriques pour l’estimation de paramètres non-linéaires. Cette méthode est présentée de

manière détaillée dans [5] pour le cas particulier de l’estimation d’un odds-ratio, indice très

souvent utilisé dans les enquêtes épidémiologiques.

(2) Données massives et sondages

Les statisticiens sont de plus en plus souvent confrontés à des données qui sont à la fois de

grandes dimension et qui proviennent potentiellement de bases de données gigantesques. Nous

sommes à l’ère des “Big Data”. Dans ces conditions, les techniques de sondages qui offrent un

bon compromis entre taille de données à analyser et précision de l’estimation sont des méthodes

qui reviennent sur le devant de la scène. Les travaux menés autour de ce thème concernent les
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sondages pour des données fonctionnelles, motivés par l’estimation de courbes de charge, et la

prise en compte de l’information auxiliaire lorsque les variables auxiliaires sont très nombreuses.

(a) Sondages pour des données fonctionnelles. Lorsque les variables statistiques sont

mesurées à des pas très fins (seconde ou minute), celles-ci peuvent être considérées comme des

courbes ou des fonctions du temps. Lorsque nous avons rencontré Alain Dessertaine en 2006 et

qu’il nous a présenté les problématiques de recherche qui se posaient au département R & D

d’EDF, liées à l’estimation par sondage de courbes de charge moyenne, les travaux combinant

sondage et analyse des données fonctionnelles étaient quasiment inexistants. Les deux premiers

travaux ([10], [12]) que nous avons menés sur ce thème portaient sur l’analyse en composantes

principales fonctionnelle pour des données obtenues avec des plans de sondages complexes. Ils

ont été réalisés en collaboration avec H. Cardot, M. Chaouch et C. Labruère. Suite à ces travaux,

EDF a financé la thèse CIFRE de P. Lardin. L’objectif principal était d’améliorer l’estimation de

la courbe moyenne d’électricité en considérant plusieurs stratégies ([4], [6], [7]) qui permettaient

de prendre en compte de l’information auxiliaire. Un article de synthèse concernant données

fonctionnelles et sondages va bientôt paraitre dans un numéro spécial du Journal de la Société

Française de Statistique ([1]).

Parallèlement j’ai étudié l’estimation du profil médian dans le cas des plans de sondages com-

plexes ([8]) avec M. Chaouch (qui a été recruté comme ingénieur de recherche à EDF après

l’obtention de sa thèse).

Les travaux avec EDF se poursuivent actuellement avec une nouvelle thèse, commencée en

octobre 2013 par Anne De Moliner (actuellement ingénieure chercheuse à EDF). Ce nouveau

projet de recherche porte sur la prise en compte des courbes influentes par des techniques

robustes, sur le traitement des valeurs manquantes dans les courbes par différentes méthodes

d’imputation et l’estimation dans des petits domaines.

(b) Information auxiliaire en grande dimension. Les enquêtes pour lesquelles les variables

auxiliaires sont très nombreuses sont de plus en plus fréquentes. Par exemple, les mesures

concernant l’audience sur internet pratiquées par Médiamétrie, ont été enrichies ces dernières

années par l’insertion de marqueurs ou tags qui permettent une analyse exhaustive du trafic

et de la fréquentation d’un site. Dans ces conditions, on peut se poser la question: faut-il

considérer toute cette information? En collaboration avec G. Chauvet ([25]), nous avons montré

qu’un nombre trop important de variables auxiliaires peut altérer la qualité des estimateurs et

nous proposons une méthode pas à pas de sélection des variables les plus pertinentes. De façon

alternative, des méthodes comme la régression ridge ou la régression sur composantes principales

peuvent être utilisées. La thèse de M.-A. Shehzad a porté sur le développement et l’application

de ces méthodes dans le cadre d’estimation d’un total pour des données issues d’enquêtes ([2],

[21] et [23]). Une illustration sur des données issues des enquêtes menées par Médiamétrie est

réalisée dans [27].
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Le manuscript est organisé de la façon suivante. Le chapitre 1 donne une très brève présentation

de principaux résultats sur l’estimation de totaux en théorie des sondages. Le chapitre 2

présente une synthèse des travaux concernant l’estimation des paramètres non-linéaires et la

prise en compte de l’information auxiliaire par des modèles nonparamétriques. Cependant, la

présentation abordée ici est différente de celle de Goga et al. [2009] et Goga and Ruiz-Gazen

[2014a]. Cette manière de présenter les résultats permet en particulier de justifier l’usage de

la fonction d’influence telle qu’elle a été définie par Deville [1999a]. Il s’agit du résultat de

nombreuses discussions avec A. Ruiz-Gazen et je pense que ce mémoire de HDR est la meilleure

opportunité pour présenter cette approche. Pour finir, le chapitre 3 présente une synthèse des

travaux réalisés autour du thème “données massives et sondages.”

Liste des travaux:

1. Lardin, P., Cardot, H. and Goga, C. (2014). Analysing large datasets of functional data:

a survey sampling point of view (à parâıtre dans un numéro spécial dans le Journal de la

Société Française de Statistique).

2. Goga, C. and Shehzad, M.-A. (2014). A note on partially penalized calibration, Pakistan

Journal of Statistics, 30, 429-438.

3. Goga, C. and Ruiz-Gazen, A. (2014). Efficient estimation of non-linear finite population

parameters using non-parametrics, Journal of Royal Statistical Society, Series B, 76, 113-

140.

4. Cardot, H., Goga, C. and Lardin, P. (2014). Variance estimation and asymptotic confi-

dence bands for the mean estimator of sampled functional data with high entropy unequal

probability sampling designs, Scandinavian Journal of Statistics, 41, 516-534.

5. Goga, C. and Ruiz-Gazen, A. (2014). Estimating the odds-ratio using auxiliary informa-

tion, à parâıtre dans Mathematical Population Studies, numéro spécial.

6. Cardot, H., Dessertaine, A., Goga, C., Josserand, E. et Lardin, P. (2013). Comparison

of different sample designs and construction of confidence bands to estimate the mean

of functional data: An illustration on electricity consumption, Survey Methodology, 39,

283-301.

7. Cardot, H., Goga, C. and Lardin, P. (2013). Uniform convergence and asymptotic confi-

dence bands for model-assisted estimators of the mean of sampled functional data, Elec-

tronic Journal of Statistics, 7, 562-596.

8. Chaouch, M. and Goga, C. (2012). Using complex surveys to estimate the L1-median of

a functional variable: application to electricity load curves, The International Statistical

Review, Special Issue On Energy, 80, 40-59.
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9. Chaouch, M. and Goga, C. (2010). Design-based estimation for geometric quantiles with

application to outlier detection, Computational Statistics and Data Analysis, 54, 2214-

2229.

10. Cardot, H, Chaouch, M., Goga, C. et Labruère, C. (2010). Properties of Design-based

Functional Principal Components Analysis. Journal of Statistical Planning and Inference,

140, 75-91.

11. Goga, C., Deville, J.C. and Ruiz-Gazen, A. (2009). Use of functionals in linearization and

composite estimation with application to two-survey data, Biometrika, 96, 691-709.

12. Cardot, H., Chaouch, M., Goga, C. and Labruère, C. (2008). Functional Principal Com-

ponents Analysis with Survey Data. In Functional and Operatorial Statistics, Sophie

Dabo-Niang and Frédéric Férraty (eds.), Springer-Verlag Heidelberg.

13. Chauvet, G., Goga, C. et Ruiz-Gazen, A. (2008). Estimation de variance en présence

de deux échantillons : linéarisation et bootstrap. In Méthodes de sondages, Guibert, P.,

Haziza, D., Ruiz-Gazen, A. et Tillé, Y. (eds.), Dunod, Sciences Sup, Paris 2008, pp.

369-374.

14. Aragon, Y., Goga, C. et Ruiz-Gazen, A. (2006). Estimation non paramétrique de quantiles

en présence d’information auxiliaire. In Méthodes d’enquêtes et sondages. Pratiques eu-

ropéenne et nord-américaine, Pierre Lavallée et Louis-Paul Rivest (eds.), Dunod, Sciences

Sup, Paris 2006, pp. 377-382.

15. Goga, C., Deville, J.-C. and Ruiz-Gazen, A. (2006). Linéarisation par la fonction d’influence

pour des données issues de deux échantillons. In Méthodes d’enquêtes et sondages. Pra-
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Sciences Sup, Paris 2006, pp. 382-388.
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17. Goga, C. (2005). Estimation de l’évolution d’un total en présence d’information auxiliaire.

Une approche par splines de régression. Comptes Rendus de l’Academie des Sciences, Ser.

1, 339 (2005), 441-444.

18. Deville, J.C. et Goga, C. (2004). Estimation par régression par polynômes locaux dans des
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Chapter 1

A brief overview on the estimation

of finite population totals

This chapter gives a brief presentation of the main estimators as well as some well known

asymptotic results in survey sampling theory, especially for the estimation of finite population

totals. The results presented here are not new (except result 1.4) and the stress is put on some

results needed in the next chapters. The required assumptions are introduced and discussed.

Section 1.1 fixes the notations and introduces the Horvitz-Thompson (HT) estimator of a finite

population total as well as its variance and variance estimator. The asymptotic properties of

the HT estimator are recalled in Section 1.2 and Section 1.3 presents the Hájek approximation

of the variance for πps sampling designs. Finally, Section 1.5 deals with different approaches

for improving the HT estimator.

1.1 The Horvitz-Thompson (HT) estimator of finite population

totals

Consider the finite population U = {1, . . . , k, . . . , N} and suppose we wish to estimate the total

ty of a study variable Y over the population U :

ty =
∑
k∈U

yk,

where yk is the value of Y for the kth unit. Let s ⊂ U be a probability sample selected

from U according to a sampling design p(·). More exactly, p(·) is a probability distribution

defined on the set S of all possible subsets of U and p(s) is the probability of selecting the

sample s. Given p(·), each unit k from the population is assigned a known inclusion probability

πk = Pr(k ∈ s) > 0 =
∑

k3s p(s), and a corresponding sampling design weight dk = 1/πk. We

suppose that yk is known for all k ∈ s (complete response).

1
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Without auxiliary information, the total ty can be estimated by the well-known HT estimator

(Horvitz and Thompson [1952]):

t̂yd =
∑
k∈s

dkyk =
∑
k∈s

yk
πk
. (1.1)

If we denote by Ik = 1{k∈s} the sample membership indicator, then the HT estimator may be

written as

t̂yd =
∑
k∈U

dkykIk.

If all the first-order inclusion probabilities are positive, πk > 0, then the HT estimator is unbiased

for ty with respect to the sampling design p(·), namely

Ep(t̂yd) = ty,

where Ep is the expectation with respect to the sampling design. Its variance with respect to

p(·) is given by

Vp(t̂yd) =
∑
k∈U

∑
k∈U

(πkl − πkπl)dkdlykyl, (1.2)

where πkl = Pr(k, l ∈ s) is the second-order inclusion probability. If all πkl > 0, then Vp(t̂yd)
can be estimated unbiasedly by the HT variance estimator:

V̂ (t̂yd) =
∑
k∈s

∑
k∈s

πkl − πkπl
πkl

dkdlykyl. (1.3)

Proportional-to-size designs

For fixed-size sampling designs, the variance Vp given in (1.2) may be written as

VY GS(t̂yd) = −1

2

∑
k∈U

∑
l∈U

(πkl − πkπl) (dkyk − dlyl)2 . (1.4)

This formula is due to Yates and Grundy [1953] and Sen [1953]. This variance can be estimated

by

V̂Y GS(t̂yd) = −1

2

∑
k∈s

∑
l∈s

πkl − πkπl
πkl

(dkyk − dlyl)2 , (1.5)

which may be different from the HT variance estimator given in (1.3).

We can remark from (1.4), that VY GS(t̂yd) = 0 for a sampling design such that πk is proportional

to yk, for all k ∈ U. In practice, we can take πk to be proportional to a real auxiliary variable



Chapter 1. Overview 3

X which is nearly proportional to the variable of interest and whose values xk, supposed to be

positive, are known for all k ∈ U . The inclusion probabilities are then given by:

πk = n
xk∑
k∈U xk

. (1.6)

If some xk values are very large, it may happen that the above πk > 1 for some elements. In

this situation, we could set πk = 1 for all k such that nxk >
∑

k∈U xk and let πk be proportional

to X for the remaining elements k. Without replacement designs satisfying (1.6) are called πps

designs. For given first-order inclusion probabilities πk, there are many such sampling designs

(see e.g Brewer and Hanif [1983] and Tillé [2006]). In particular, the balanced sampling (Deville

and Tillé [2004]) balanced on πk leads to a πps sampling design.

1.2 Asymptotic properties of the HT estimator

We are interested in investigating the asymptotic properties of certain estimators, among which

the HT estimator receives a special attention, as the sample size and population size become

large. We consider the asymptotic framework introduced by Isaki and Fuller [1982] and a se-

quence of growing and nested populations UN of size N tending to infinity. A sample sN of

size nN growing to infinity is drawn from UN according to the sampling design pN (sN ). Note

that while the sequence of populations is nested, the sequence of samples is not. The first and

second order inclusion probabilities are respectively denoted by πkN and πklN . For simplicity

of notations and when there is no ambiguity, the subscript N is dropped. Usually, we are inter-

ested in establishing the following asymptotic properties.

Definition 1.1. An estimator θ̂ is consistent for θ if

for all ε > 0, lim
N→∞

P(|θ̂ − θ| > ε) = 0.

Definition 1.2. An estimator θ̂ is asymptotically design-unbiased (ADU) for θ if

lim
N→∞

Ep(θ̂) = θ.

We are often interested in estimating nonlinear estimators such as the calibration or the GREG-

type estimators which can be shown to be asymptotically equivalent to linear combination of

HT-type estimators. So, the consistency and the ADU-ness of the HT estimator t̂yd are briefly

recalled. In order to obtain these properties, the following assumptions on the sampling designs

and on the study variable Y are generally supposed.

Assumption S1. Assume that lim
N→∞

n

N
= π ∈ (0, 1).
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Assumption S2. Assume that mink∈U πk ≥ λ̃ and mink,l∈U πkl ≥ λ∗ with λ̃ and λ∗ some

positive constants and

limN→∞n max
k 6=l∈U

|πkl − πkπl| < C1 <∞,

with C1 a positive constant.

Assumption V1. Assume that lim
N→∞

1

N

∑
k∈U

y2
k <∞.

Assumptions (S1) and (S2) deal with first and second order inclusion probabilities and are

rather classical in survey sampling theory (see also Robinson and Särndal [1983] and Breidt

and Opsomer [2000]) but exclude situations in which the sampling fraction is negligible. They

are satisfied for many sampling designs including the simple random sampling without replace-

ment, the stratified sampling and the rejective sampling (Hájek [1981], Boistard et al. [2012]).

Assumption (S2) is not satisfied for systematic sampling design. It may be weakened as seen in

Breidt and Opsomer [2008] to include the cluster sampling design, but the rates of convergence

of the HT estimator are generally slower.

Theorem 1.3. (Consistency of the HT estimator) Make assumptions (S1)-(S2) and (V1). Then

lim
N→∞

nEp
[

1

N
(t̂yd − ty)

]2

<∞.

By the Markov inequality, we can obtain easily the consistency and the ADU-ness of the HT

estimator. Isaki and Fuller [1982] have also proved the consistency of the HT estimator but

assuming a slightly different assumption of the moments on Y. The book by Fuller [2009],

chapter 1, discusses also the consistency of the HT estimator.

1.3 Hájek approximation for the variance

The HT variance given in (1.2) is difficult to compute since it contains double sums and requires

the knowledge of Covp(Ik, Il) = πkl−πkπl which involves the second-order inclusion probabilities

πkl for all k 6= l. These quantities are difficult to compute or even unknown, especially for unequal

probability sampling designs such as the πps designs. As suggested by Hájek [1981], attempts

should be done in order to find fixed-size designs simple to put into practice in which Covp(Ik, Il)

would be approximated by a simple structure as follows:

Covp(Ik, Il) ' ckcl, k 6= l, (1.7)

allowing in this way to compute easily an approximation of the variance. Among unequal proba-

bility sampling designs, the Poisson (PO) sampling design has received a special attention. The

PO sampling design is a without replacement design for which the variables Ik are independent
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and distributed as

P (Ik = 1) = πk, P (Ik = 0) = 1− πk, k ∈ U.

This means that πkl = πkπl for k 6= l ∈ U and the variance HT formula becomes easy to calculate

in this case: the covariance terms are zero and the variance terms are equal to πk(1 − πk).

However, an important drawback of the PO design is the fact that its size is random. By

conditioning on the event ns = n, we obtain the PO sampling design conditioned to size or the

rejective sampling design in which a sample is selected according to a PO design and rejected if

it does not have the desired size. The operation is continued until a sample of size n is obtained.

Hájek [1964] showed that the second-order inclusion probabilities for the rejective sampling may

be approximated as follows

πkl = πkπl

{
1− (1− πk)(1− πl)

D(π)
[1 + o(1)]

}
where D(π) =

∑
k∈U πk(1− πk) and if limN→∞D(π) = ∞. This means that in the case of the

rejective sampling, the covariance terms Covp(Ik, Il) for k 6= l satisfy relation (1.7) and they are

all negative ensuring the positivity of the YGS variance estimator given in (1.5). Further, many

sampling designs may be derived by means of conditioning as developed in Tillé [2006] so that

the above approximation is valid. Hájek [1981] proves that this approximation is also valid for

the Sampford-Durbin sampling.

Taking into account these considerations, the following assumption on the second-order inclusion

probabilities will be assumed for the rest of this document.

Assumption S3. Assume that

πkl = πkπl

{
1− (1− πk)(1− πl)

D(π)
[1 + o(1)]

}
, for k, l ∈ U

where D(π) =
∑

k∈U πk(1− πk) and limN→∞D(π) =∞.

If assumption (S3) is satisfied, then the YGS variance may be approximated by

VH(t̂yd) =
∑
k∈U

(yk −Rπk)2

(
1

πk
− 1

)
(1.8)

for R =

∑
k∈U yk(1− πk)

D(π)
. This formula is also called the Hájek variance approximation. More-

over, the assumption S3 implies that lim sup
N→∞

n max
k 6=l∈U

|πkl − πkπl| < C1 <∞.

Among fixed-size sampling designs with fixed first-order inclusion probabilities πk, the condi-

tional PO sampling design possesses a remarquable property: it is the sampling design with the

highest entropy (Hájek [1981], Chen et al. [1994]), where the entropy of a sampling design is
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defined as

H(p) = −
∑
s∈S

p(s) ln(p(s)), (1.9)

with the convention 0 ln 0 = 0 and S is the set of all possible samples. So, the entropy is a

measure of spread of the sampling design and as Hájek [1981] remarked, “we shall try to spread

probabilities as much as is reasonable and compatible with prescribed probabilities of inclusion

π1, . . . , πN excluding eventually those samples which are a priori undesirable.” Berger [1998b]

proves that the Hájek variance approximation may be used for designs asymptotically maximum

entropy. Berger [1998b] used the Kullback-Leibler divergence K(p, prej) with respect to prej and

defined by:

K(p, prej) =
∑
s∈S

p(s)log

(
p(s)

prej(s)

)
(1.10)

as a measure of “divergence” of a design p with respect to the rejective sampling prej . A design

is then asymptotically maximum entropy if limN→∞K(p, prej) = 0.

Variants and refinements of the Hájek variance formula as well as variance estimators are pro-

posed in Deville and Tillé [2005]. Matei and Tillé [2005] show on simulations that these ap-

proximations to the variance of HT estimators are effective, even for moderate sample sizes,

provided that the entropy of the underlying sampling design is high enough. Recently Dev-

ille and Tillé [2005] and Fuller [2009] consider balanced, or approximately balanced, sampling

algorithms which can be useful to build designs with fixed size and given inclusion probabili-

ties. They relate these sampling designs to the rejective sampling, so that the Hájek variance

approximation can be used.

1.4 Variance estimation

In order to obtain the consistency of the HT variance estimator given by (1.3), an additional

assumption on the fourth-order inclusion probabilities is needed:

Assumption S4. Assume that limN→∞max(k,l,k′,l′)∈D4,n
|Ep{(Ikl − πkl)(Ik′l′ − πk′l′)}| = 0

where D4,n is the set of all distinct 4-tuples from U,

as well as on the fourth-moment of the study variable Y :

Assumption V2. Assume that lim
N→∞

1

N

∑
k∈U

y4
k <∞.

Assumption (S4) was considered for the first time by Breidt and Opsomer [2000] in a non-

parametric framework in order to prove the consistency of the variance estimator for the local
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polynomial nonparametric model-assisted estimator. Their proof may be adapted easily to the

HT variance estimator V̂ (t̂yd). Assumption (S4) is true for simple random sampling without

replacement, stratified sampling and rejective sampling (Boistard et al. [2012]). More generally,

it also holds for unequal probability designs with large entropy (see their definitions in formula

1.9, Section 1.3) as shown in the following proposition:

Proposition 1.4. (Cardot et al. [2014b]) Let p be a sampling design with the same first or-

der inclusion probabilities as the rejective design prej . If limN→∞D(π) = ∞, for D(π) =∑
k∈U πk(1− πk) then

max
(k,l,k′,l′)∈D4,n

|Ep{(Ikl − πkl)(Ik′l′ − πk′l′)}| ≤
C

D(π)
+

√
K(p, prej)

2
,

for some constant C and K(p, prej) is the Kullback-Leibler divergence with respect to prej given

in (1.10).

Theorem 1.5. (Consistency of the variance estimator) Make assumptions (S1), (S2), (S4) and

(V2). Then:

lim
N→∞

nEp|V̂ (t̂yd)− Vp(t̂yd)| = 0.

When the aim is to build confidence intervals, the asymptotic distribution of the HT estimator

is required. Asymptotic normality is not easy to show in survey sampling framework and it has

been shown in case-by-case studies: Erdös and Rényi [1959] and Hájek [1960] checked it for sim-

ple random sampling without replacement, Hájek [1964] for the rejective sampling by assuming

a Lindeberg-Feller condition. Vı́sek [1979] has given a simpler proof of the Hájek’s result with

application to the rejective, Sampford and successive sampling designs. Berger [1998a] extends

the result of Hájek [1964] to sample designs which are asymptotically of maximum entropy.

In order to check the Lindeberg condition, the variable Y is usually assumed to have a finite

(2 + δ)th moment, δ > 0 (Fuller [2009], Thompson [1997]).

Taking into account these considerations, the following assumption will be assumed as soon as

the aim is to build confidence intervals:

Assumption S5. Assume that the sampling design and the study variable is such that the

HT estimator is asymptotically normal, namely

√
n

N
(t̂yd − ty)→D N (0, σ2)

as N →∞ and lim
N→∞

n

N2
Vp(t̂yd) = σ2.
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Moreover, if the variance Vp(t̂yd) is estimated by a consistent estimator V̂ (t̂yd) (result 1.5), we

have with Slutsky’s theorem:
t̂yd − ty√
V̂ (t̂yd)

→D N (0, 1).

1.5 Improving the HT estimator by taking into account auxil-

iary information

Let X1, . . . ,Xp be p auxiliary variables and let xTk = (xk1, . . . , xkp) be the vector of the values

of the auxiliary variables for the k-th individual. Usually, we know only the finite population

total of xk, denoted by tx. When the vector xk is known for all the population units, we have

a complete information.

It is of interest to improve the HT estimator t̂yd =
∑

k∈s dkyk of ty by using this auxiliary

information. With multipurpose surveys, the main goal is to derive a unique weight wks for

each unit k in the sample with wks containing the auxiliary information but not depending on

the study variables. In this way, it is possible to estimate any linear combination of totals and

other finite population parameters (Särndal [2007]).

Then, estimators of finite population totals are weighted sums such that :

t̂yw =
∑
k∈s

wksyk. (1.11)

Mainly, there are two ways to incorporate auxiliary information depending on whether or not

a model is fitted to the data. If a model relates xk to yk, then there are at least two ways

to construct estimators: model-assisted estimators and model-based estimators. If no model is

explicitly stated, we have the calibration approach as suggested by Deville and Särndal [1992].

Calibration approach

Deville and Särndal [1992] suggested the calibration method to use effectively the known popu-

lation totals of Xj , j = 1, . . . , p at the estimation stage. It is a very popular method extensively

used in practice due to its simple formulation. Särndal [2007] gives a very comprehensive

overview of the original method as well as its various applications and extensions.

The calibration estimator of ty is a weighted estimator t̂cal
yw =

∑
k∈sw

cal
ks yk where the calibration

weights wcal
s = (wcal

ks )k∈s minimize a distance measure Υs to the sampling weights dk and subject

to some calibration constraints. More exactly,

wcal
s = argminwΥs(w) (1.12)
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subject to ∑
k∈s

wcal
ks xk = tx, (1.13)

where tx =
∑

k∈U xk is the vector of known totals of Xj , j = 1, . . . , p and w = (wk)k∈s. The

calibration constraints (1.13) may be interpreted as a property of consistency with known totals

of the weight system. This property is mostly looked for in national statistical agencies.

Several distance functions Υs have been suggested in Deville and Särndal [1992] and all resulting

estimators are asymptotically equivalent to the one obtained by minimizing the chi-squared

distance function

Υs(w) =
∑
k∈s

q−1
k

(wk − dk)2

dk
, (1.14)

where the qk’s are known positive constants used to control the variability of the observations

and are unrelated to dk. With the chi-square distance Υs given in (1.14), the resulting calibration

weights are

wcal
ks = dk − qkdkxTk

(∑
k∈s

qkdkxkx
T
k

)−1

(t̂xd − tx), k ∈ s (1.15)

where t̂xd =
∑
k∈s

dkxk is the HT estimator of tx. The calibration estimator t̂cal
yw is

t̂cal
yw = t̂yd −

(
t̂xd − tx

)T
β̂x(d,q−1), (1.16)

where β̂x(d,q−1) = (
∑

k∈s dkqkxkx
T
k )−1

∑
k∈s dkqkxkyk

1 with d = (dk)k∈s and q−1 = (q−1
k )k∈s.

Using the distance

Υs(w) = −
∑
k∈s

dk log

(
wk
dk

)
,

results in the empirical likelihood studied by Chen and Qin [1993] in a finite population context.

Note also that the well-known poststratified estimator is also a particular case of calibration

estimator.

Under mild regularity assumptions, Deville and Särndal [1992] prove that the calibration esti-

mator t̂cal
yw is asymptotically equivalent to the difference estimator

t̃diff
y,x = t̂yd −

(
t̂xd − tx

)T
β̃x(q−1), (1.17)

1This general notation for the estimator of the regression coefficient will be useful in Section 3.2
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with β̃x(q−1) = (
∑

k∈U qkxkx
T
k )−1

∑
k∈U qkxkyk, in the sense that

1

N
(t̂cal
yw − ty) =

1

N
(t̃diff
y,x − ty) + op(n−1/2).

The above result is true regardless of the choice of the distance. In particular, the calibration

estimator is consistent and ADU with asymptotic variance equal to

AVp(t̂cal
yw) =

∑
k∈U

∑
k∈U

(πkl − πkπl)dkdl(yk − xTk β̃x(q−1))(yl − xTl β̃x(q−1)). (1.18)

Hence, the calibration estimator will improve the HT estimator, namely AVp(t̂cal
yw) ≤ Vp(t̂yd),

if the residuals yk − xTk β̃x(q−1) are small. This happens if the auxiliary variable is strongly

correlated with the study variable. Nevertheless, if the study variable is non linearly related to

the auxiliary variables, or the study parameter is more complicated (for example, the Gini in-

dex), then the Deville and Särndal’s suggested method should be modified. Several suggestions

exist in the literature. Goga and Ruiz-Gazen [2014c] propose in a recent work a new calibration

method that can handle efficiently and in a simple manner the estimation of nonlinear param-

eters or nonlinear superpopulation models. More details are given in Section 2.2.3.

Another issue with the calibration estimator is when the number p of auxiliary variables is too

large. In this situation, several difficulties may arise. Section 3.2 gives a detailed presentation

of these difficulties as well as the suggested methods to overcome them.

Model-assisted approach

In the model-assisted approach as described in Särndal et al. [1992], we assume that the finite

population of the yk values are realizations from an infinite superpopulation model ξ relating

the auxiliary information xk to yk as follows:

ξ : yk = xTk β + εk, k ∈ U. (1.19)

The error terms εk are centered, namely Eξ(εk) = 0 with variance Vξ(εk) = vk. Let V be the

N ×N diagonal variance matrix with diagonal elements vk.

The model-assisted estimator has its origins in the generalized difference estimator suggested

by Cassel et al. [1976]

tdiff
y,x = t̂yd − (t̂xd − tx)Tβ, (1.20)

=
∑
k∈s

yk − xTk β

πk
+
∑
k∈U

xTk β,

where β is the true regression coefficient. It is in fact the difference between the HT estimator

t̂yd and the bias of t̂yd − ty under the model ξ. It can be also seen as the prediction of ty under

the model ξ plus a design-bias adjustment. In practice, we never know the true β, thus we have

to build an estimator of it. Generally, this estimator is obtained using a two-step procedure:
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we estimate first β under the model ξ by:

β̃x(v) =

(∑
k∈U

v−1
k xkx

T
k

)−1 ∑
k∈U

v−1
k xkyk, (1.21)

and next, we estimate β̃x(v) by using the sampling design:

β̂x(d,v) =

(∑
k∈s

dkv
−1
k xkx

T
k

)−1∑
k∈s

dkv
−1
k xkyk. (1.22)

Plugging β̂x(d,v) in (1.20) yields the generalized regression estimator (GREG) or the model-

assisted estimator:

t̂greg
yw = t̂yd − (t̂xd − tx)T β̂x(d,v). (1.23)

The calibration estimator obtained with the chi-squared distance is equal to the GREG estimator

if qk = v−1
k for all k ∈ s, and for this reason, this choice of qk will be made in the following.

The GREG estimator is model-unbiased, namely Eξ(t̂greg
yw − ty) = 0, and ADU, regardless if the

model is true or not. This property may be seen as a robustness property. Fuller [2002] gives a

comprehensive review of the GREG estimator and of its asymptotic properties.

The GREG estimator is asymptotically equivalent to the difference estimator from (1.17) with

asymptotic variance given by (1.18). From a model point of view, the variance of the GREG

estimator is small if the predicted values xTk β̃x(v) are close enough to the yk’s, namely if the

model ξ stated in (1.19) explains well the study variable. If the linear regression model does not

fit the data well, there is no improvement over the HT estimator and non-parametric models

may be used instead (see section 2.2).

Proposition 1.6. (Särndal [1980]) Suppose the superpopulation model ξ holds, with variance

matrix V = diag(vk)k∈s satisfying vk = cTxk for some p−dimensional vector c. Then, the

GREG estimator is the population total of the estimated predictions:

t̂greg
yw =

(∑
k∈U

xTk

)
β̂x(d,v).

Model-based approach

Using a model-based strategy, we look for a linear predictor of ty being the sum of the sample

yk’s values plus a predictor of the sum of non sampled units:

t̂yw =
∑
k∈s

yk +
∑

k∈U−s
xTk β =

∑
k∈s

wksyk, (1.24)
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with weights wks derived by applying the Best Linear Unbiased (BLU) prediction based on the

underlying super-population model ξ (Royall [1976]). When the errors εk are uncorrelated (as

in our model 1.19), then the BLU predictor is the predictor minimizing the variance of t̂yw

under the model ξ, namely Eξ(t̂yw− ty)2, among the linear model-unbiased estimators t̂yw of ty,

namely Eξ(t̂yw − ty) = 0. Royall [1976] determined the BLU predictor in the case of correlated

units. The solution is given by

wblu
ks = 1− v−1

k xTk

(∑
k∈s

v−1
k xkx

T
k

)−1

(t̂xd − tx), k ∈ s (1.25)

and the BLU predictor t̂blu
yw is given by

t̂blu
yw =

∑
k∈s

(yk − xTk β̂x(1s,v)) +
∑
k∈U

xTk β̂x(1s,v), (1.26)

where β̂x(1s,v) = (
∑

k∈s v
−1
k xkx

T
k )−1

∑
k∈s v

−1
k xkyk and 1s is the n-dimensional vector of ones.

The variance (under the model ξ) of the BLU predictor is

Vξ(t̂blu
yw ) =

∑
k∈U−s

vk +

( ∑
k∈U−s

xk

)(∑
k∈s

v−1
k xkx

T
k

)−1( ∑
k∈U−s

xTk

)
.

Remark that if the model-variance V satisfies the property given in Proposition (1.6), then

the BLU predictor is also the total of predictions: t̂blu
yw =

(∑
k∈U xk

)T
β̂x(1s,v). Valliant [2009]

consider that “models that satisfy the variance condition vk = cTxk for some p−dimensional

vector c, play a key role in robustness and optimality”.

The BLU-weights may be obtained also as the minimizers of a distance function to the unit

weights while satisfying the same constraints (1.13) (see Valliant et al. [2000], Guggemos and

Tillé [2010]) :

wblu
s = argminw

∑
k∈s

vk(wk − 1)2 subject to
∑
k∈s

wblu
ks xk = tx, (1.27)

where vk is the variance of the error-term from the superpopulation model given by (1.19).

The constraints result from the model-unbiasedness condition of the weighted estimator t̂yw.

So, we can see the BLU weights wblu
ks as the closest weights to the unit weights according to the

following chi-square distance:

Υs(w) =
∑
k∈s

vk(wk − 1)2, (1.28)

and satisfying the calibration constraint.

Unlike the model-assisted approach, estimators built in a model-based approach are model-

dependent and may suffer from large bias if the model is misspecified. To protect against

model-misspecification, Royall and Herson [1973] suggested to select a sample s such that is
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balanced on power of the auxiliary information, namely

1

n

∑
k∈s

x
j− 1

2
k =

x(j)

x(1/2)
, j = 1, . . . , J (1.29)

and x(j) =
∑

k∈U x
j
k/N. Exact methods for obtaining balanced samples are described in Chauvet

and Tillé [2006] and Tillé [2006]. The estimator t̂blu
yw is ADU only in particular situations (Särndal

and Wright [1984], Brewer et al. [1988]).

As presented above, the calibration estimator t̂cal
yw as well as the BLU predictor t̂blu

yw , may be

obtained as minimizers of some distance function. In order to give a unified presentation of the

penalized estimators in both calibration and model-based frameworks as presented in section

3.2, let a = (ak)k∈s and b = (bk)k∈s denote two pre-specified sets of positive numbers. Let Υs

be the chi-squared distance (Chambers [1996])

Υs((a,b); w) =
∑
k∈s

bk
(wk − ak)2

ak
. (1.30)

The optimum weights wopt
s (a,b) = (wopt

ks (a,b))k∈s are the ones that satisfy

wopt
s (a,b) = argminwΦs((a,b); w)

subject to ∑
k∈s

wopt
ks (a,b)xk = tx.

We can remark that for (a,b) = (d,v), we obtain the calibration weights wcal
s = wopt

s (d,v) and

for (a,b) = (1s,v), we obtain the BLU weights, wblu
s = wopt

s (1s,v).



Chapter 2

Estimation of nonlinear parameters

and of their variance by a functional

approach

The estimation of nonlinear parameters in finite populations has become a crucial problem in

many recent surveys. For example, in the European Statistics on Income and Living Conditions

(EU-SILC) survey, several indicators for studying social inequalities and poverty are considered;

these include the Gini index, the at-risk-of-poverty rate, the quintile share ratio and the low-

income proportion. Thus, deriving estimators and confidence intervals for such indicators is

particularly useful.

Usually, such parameters are estimated using the sampling weights dk, k ∈ s. Then, the variance

of the so obtained estimators can not be computed by using the simple HT variance formula

given in (1.2). Variance estimation of nonlinear parameters is a issue that has already been

addressed in several papers. There exist mainly two approaches: resampling methods and

linearization methods. Resampling methods include jackknife, balanced repeated replication

and the bootstrap and they can all be very computationally intensive. Moreover, and unlike

linearization methods, resampling methods can only be applied to specific sampling design.

For unequal probability sampling designs, they may run into difficulties (Wolter [2007]). We

refer to the recent review of resampling methods done by Gershunskaya et al. [2009]. As for the

linearization methods, the well-known Taylor method can be used for nonlinear but continuously

differentiable functions of totals such as ratios. Books of Wolter [2007] and Särndal et al.

[1992] gave comprehensive descriptions of the method with application on the case of the ratio,

the regression coefficient and the empirical distribution function. Binder [1983] suggested the

estimating equations approach in order to obtain the asymptotic variance of estimators defined

as solution of estimating equations. This method has been used by Binder and Kovacevic [1995]

and Kovacevic and Binder [1997] for several measures of income inequalities. We mention also

Shao [1994] for L-estimators. Recently, Deville [1999a] suggested the functional linearization

14
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by means of the influence function and Demnati and Rao [2004] a modified Taylor method.

We mention also the very recent work of Wang and Opsomer [2011] treating non differentiable

parameters.

In presence of auxiliary information, it may be of interest to take it into account in order

to improve nonlinear parameter estimation. However, this issue has been mainly addressed

for estimating totals and means as presented briefly in Chapter 1. In multipurpose surveys,

the goal is to use weights not depending on the study variable so that they can be used for

estimating different totals or nonlinear parameters. But how should be computed these weights

to improve most of parameter estimators? When estimating a nonlinear parameter, the linear

models may not be the best choice and nonparametric models are preferred. In such conditions,

the variance estimation is a difficult issue. During my PhD, I suggested a class of nonparametric

model-assisted estimators based on B-spline regression (Goga [2005]) for the estimation of finite

population totals. Lately, and in collaboration with A. Ruiz-Gazen, we extended the method

to penalized B-spline regression for finite population totals as well as for nonlinear parameters

(Goga and Ruiz-Gazen [2014a], Goga and Ruiz-Gazen [2014b]). Our main contribution consists

firstly in developing a new system of survey weights, based on nonparametric regression, and

that can be used to estimate any non-linear parameter that is associated with any study variable

of the survey. And secondly, we show by using the influence function linearization that under

mild assumptions, the nonparametric substitution estimator is asymptotically equivalent to a

nonparametric generalized estimator for the total of an artificial variable depending on the study

parameter called linearized variable.

When survey data are collected from several samples selected at different moments of time for

example, it is of interest to study how parameters change over time. Estimating the change in

the Gini index between two periods of time is one particular example. Work concerning temporal

change mainly deals with the estimation of totals or means; we mention Särndal et al. [1992],

Hidiroglou [2001] and Berger [2004] among others. However, as far as I know, the estimation

of nonlinear parameters with multiple-samples has not been addressed. In this multiple-sample

setting, several difficulties/questions arise such as: how can be used the information from the

different samples and in particular, the one from the overlapping samples, to estimate efficiently

the study parameter? What is the optimal overlapping? How is computed and estimated

the variance for estimators of nonlinear parameters ? During my PhD, I was concerned with

all these issues and I developed a class of composite estimators for the estimation of finite

population totals. In collaboration with A. Ruiz-Gazen and J.-C. Deville, we extended this

work to the nonlinear case and the two-sample case (Goga et al. [2006], Goga et al. [2009]).

With two overlapping samples, there exist three non-overlapping samples which naturally lead

us to consider three-variate functionals and their associated partial influence functions. Again,

our main contribution was to suggest a composite system of weights which takes into account the

disjoint samples. We showed by using the partial influence function linearization that under mild

assumptions, the composite substitution estimator is asymptotically equivalent to a composite

estimator for the total of the linearized variables. Chauvet et al. [2008] and Chauvet and Goga

[2013b] give an extension of the Gross [1980]’s bootstrap for the two-sample framework.
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This chapter is structured as follows. In Section 2.1, I will give the main result concerning the

functional linearization as obtained in Goga and Ruiz-Gazen [2014a]. However, the presentation

exhibited here is slightly different from the one adopted in Goga et al. [2009] and Goga and

Ruiz-Gazen [2014a] and gives, in particular, a justification of some results introduced by Deville

[1999a]. Section 2.2 extends the result for taking into account auxiliary information as developed

in Goga and Ruiz-Gazen [2014a], Goga and Ruiz-Gazen [2014b] and gives a calibration point of

view (Goga and Ruiz-Gazen [2014c]) as well as a small application using data extracted from

the French Labor Force Survey from 1999-2000. Finally, Section 2.3 concludes and gives several

directions for further work.

2.1 Basics of the method

Consider now a parameter Φ which is more complicated than a total or a mean. Broadly

speaking, linearization techniques consist in obtaining an expansion of an estimator Φ̂ of Φ as

follows

Φ̂− Φ '
∑
k∈s

dkuk −
∑
k∈U

uk = t̂ud − tu, (2.1)

where uk is a kind of artificial variable called the linearized variable of Φ by Deville [1999b]. The

way it is derived depends on the type of linearization method used which could include Taylor

series (Särndal et al. [1992]), estimating equations Binder [1983] or influence function (Deville

[1999b]) approaches.

The right term of (2.1) is the difference between the HT estimator and the parameter it esti-

mates, namely the total of the variable uk over the population U . By consequence, the variance

of the right-term is easily obtained and given by∑
k∈U

∑
k∈U

(πkl − πkπl)dkdlukul. (2.2)

The main difficulties stand in finding the conditions under which the expansion (2.1) is true,

allowing in this way to obtain the asymptotic variance of Φ̂, and secondly, in computing the

linearized variables uk, for k ∈ U.

Goga and Ruiz-Gazen [2014a] aimed to provide a general method for the estimation of Φ by

considering the functional approach introduced in survey sampling theory by Campbell [1980]

and developed later by Deville [1999b]. As we will see, this approach is useful for constructing

new estimators of Φ as well as for computing their asymptotic variance.

Each unit k ∈ U is associated with yk which may be scalar or vector. For simplicity, we consider

in this section that yk ∈ R. In Chapter 3, the variable Y lies in a more general space, namely
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the space L2[0, T ] of squared integrable function on [0, T ].

The methodology consists in considering a measure defined on (R,BR), where BR are the Borel

sets on R, by

M =
∑
k∈U

δyk (2.3)

where δyk is the Dirac measure at the point yk. This means that M assigns unity mass on each

point yk with k ∈ U and zero mass elsewhere. The total mass of M is equal to N, the population

size and its definition takes into account the units k ∈ U as well as the study variable Y.

LetM be the linear space generated by the set of measures given by (2.3). Consider functionals

T :M→ G where G is some arbitrary space. In this chapter, G = R or G = Rp and in Chapter

3, G = L2[0, T ]. Furthermore, we suppose that the study parameter Φ may be written as a

functional of M,

Φ = T (M). (2.4)

Definition 2.1. A linear parameter Φ is a parameter which may be written as

Φ = T (M) =

∫
a(y)dM(y), (2.5)

where a is a function of y.

In survey sampling theory, we deal very often with totals which are in fact the simplest example

of linear functionals as defined in (2.5). For example, the total of Y may be written as ty =∫
ydM(y). Any linear combination of totals will be also a linear functional. For this reason,

functionals are considered with respect to the measure M as given in (2.3) instead of being

with respect to M/N =
∑

k∈U δyk/N, the empirical distribution, as is the custom in classical

statistics. The mean of Y defined by y =
∑

k∈U yk/N is also a linear parameter if the population

size N is not estimated. The HT variance estimator Vp(t̂yd) given in (1.2) may be also written

in a functional form by considering a slightly different measure M as considered in Langel and

Tillé [2013] and Goga and Ruiz-Gazen [2014b].

Definition 2.2. A nonlinear parameter Φ is a parameter Φ = T (M) which can not be written

as in (2.5).

There are many examples of nonlinear parameters, the simplest one is the ratio between two

finite population totals R =
∑

k∈U yk/
∑

k∈U zk. However, I will consider below two other exam-

ples of nonlinear parameters: the Gini index studied in Goga et al. [2009], Goga and Ruiz-Gazen

[2014a] and the odds-ratio studied in Goga and Ruiz-Gazen [2014b]. Remark that many exam-

ples of nonlinear parameters are considered in Deville [1999a], such as the correlation coefficient

and the eigenvalues and eigenvectors of a matrix.
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Example 1. The Gini coefficient (Gini [1914]) is one of the most known concentration measure

often desired in economical studies. If Y denotes a quantitative positive variable (for example,

the income) and F (·) denotes its distribution function defined on ]−∞,∞[, the Gini coefficient

is

G =
1

2

∫ ∫
|v − u|dF (u)dF (v)∫

udF (u)
,

provided
∫
udF (u) 6= 0. The Gini coefficient measures the dispersion of a quantitative positive

variable within a population. Statistical institutes generally make use of the Gini coefficient

to evaluate the income inequalities of a country at different periods of time, or of different

countries at the same time. In the last decades, the Gini coefficient has also been considered

in various fields such as biology (Graczyk [2007]), environment (Groves-Kirkby et al. [2009]) or

astrophysics (Lisker [2008]).

In finite populations, the Gini index (Nygard and Sandström [1985]) is given by (after neglecting

the term 1/N):

G =

∑
U yk (2F (yk)− 1)

ty
=

∫
(2F (y)− 1)ydM(y)∫

ydM(y)
(2.6)

where F (y) =
∫

1{η≤y}dM(η)/
∫
dM(y) =

∑
U 1{yk≤y}/N is the empirical distribution function.

There is an extensive literature on variance estimation for the Gini estimator with observations

obtained from survey data and the very recent paper of Langel and Tillé [2013] gives a compre-

hensive review and comparison of these works. Sandstrom et al. [1988] listed possible variance

estimators for a general sampling design, including a jackknife variance estimator. Linearization

variance estimation was studied by Kovacevic and Binder [1997], and Berger [2008] demonstrated

the equivalence between linearization and a generalized jackknife technique first suggested by

Campbell [1980]. Qin et al. [2010] proposed bootstrap and empirical likelihood based confidence

intervals for the Gini coefficient. They studied these methods both theoretically and empirically

in the particular case of stratified with replacement simple random sampling.

Example 2. The odds ratio measure is used in health and social surveys where the odds of a

certain event is to be compared between two populations. The odds-ratio, which we denote by

OR, can be used to quantify the association between the levels of a response variable Y and a

risk variable Z. Let pi = P (yi = 1|Z = zi) and consider the logistic regression

logit(pi) = log
pi

1− pi
= β0 + β1zi.

Then, the odds-ratio is (Agresti [2002]):

OR =
odds(Y = 1|Z = zi + 1)

odds(Y = 1|Z = zi)

= expβ1.



Chapter 2. Functional Linearization 19

The maximum likelihood estimator of β = (β0, β1)T is the solution of the following estimating

equation:

T (M ;β) =

∫
t(β)dM =

∑
k∈U

tk(β) = 0, (2.7)

where tk(β) = zk(yk − µ(zTk β)) with µ(zTk β) = exp (zTk β)(1 + exp (zTk β))−1 and zk = (1, zk)
T .

Iterative methods may be used to compute β. Korn and Graubard [1999] (p. 169-170) advocate

the use of weights to estimate the odds ratios. With a categorical variable Z, the odds-ratio

has a simpler form and may be derived from a contingency table: OR =
N00N11

N01N10
, where N00,

N01, N10 and N11 are the population counts associated to the contingency table.

More generally, Binder [1983] studied design-based estimators for parameters defined as solution

of estimating equation as given in (2.7) and Rao et al. [2002] suggested using poststratification

to improve the estimation of such parameters. Remark also, that the Gini index may be ob-

tained as a solution of an estimating equation (Kovacevic and Binder [1997]).

Let consider now the estimation of the parameter Φ by using the sample s. In order to do that,

we estimate first the measure M by the HT estimator defined below.

Definition 2.3. The HT estimator of the measure M is the estimator which assigns the sam-

pling weight dk to each point yk with k ∈ U and zero elsewhere, namely

M̂d =
∑
k∈s

dkδyk =
∑
k∈U

Ikdkδyk . (2.8)

Note that M̂d is a random measure of total mass equal to N̂d =
∑

k∈s dk. The estimator of Φ

based on the sampling weights dk is obtained by the plug-in method.

Definition 2.4. The HT substitution estimator for Φ is obtained by plugging M̂d into (2.4):

Φ̂d = T (M̂d).

In Section 2.2, an estimator of M which takes into account auxiliary information by nonparamet-

ric models is suggested and Goga et al. [2009] suggested an extension to a temporal framework.

The study parameters are considered with respect to measures M and M̂d, but in order to obtain

the asymptotic properties, we will consider their normalized measures
M

N
and

M̂d

N
. Suppose the

following assumptions upon the functional T.
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Assumption F1. The functional T is α-homogeneous, in that there is a real number α ≥ 0,

dependent on T such that T (rM) = rαT (M) for any real r.

We assume also that limN→∞N
−αT (M) <∞.

Many study parameters may be written as homogeneous functionals. For example, a total ty is

1-homogeneous, a ratio R is 0-homogeneous. The same is true for the Gini index while the HT

variance Vp(t̂yd) is 2-homogeneous (see Goga and Ruiz-Gazen [2014b]).

Functional expansion of T was first suggested by von Mises [1947] around F a distribution

function. Heuristically speaking, for any G belonging to a neighborhood of F, the functional

expansion of T in G is a Taylor-type expansion of T :

T (G)− T (F ) = T (F ;G− F ) + RemT (G,F ), (2.9)

where RemT (G,F ) is the reminder term associated to T and depending on G,F and T (F ;G−F )

is the Gâteaux derivative of T at F in the direction of G and defined by

T (F ;G− F ) = lim
ε→0

T (F + ε(G− F ))− T (F )

ε
. (2.10)

The weakest type of differentiability we assume is the Gateaux differentiability. Then, this

derivative T (F ; ·) is linear in the second argument. In robust statistics, the interest is about the

asymptotic behavior of functionals T with respect to FN the empirical distribution function. In

this case, replacing G with FN and F with F , the true distribution function, we obtain

T (FN )− T (F) = T (F ;FN −F) + RemT (FN ,F)

=
1

N

N∑
k=1

T (F ; δyk −F) + RemT (FN ,F) (2.11)

where δy is the Dirac mass in y. Using relation (2.10), we obtain that

T (F ; δyk −F) = lim
ε→0

T ((1− ε)F + εδyk)− T (F)

ε

which is the definition of the influence function given by Hampel [1974] in robust statistics.

This function played an important role in the theory of robust estimation due to the work by

Hampel [1974] who remarked that, for large N, the influence function measures the effect on

the parameter Φ of contaminating F with an infinitesimal mass on the observation y. Moreover,

the influence function provides the asymptotic variance of the estimator of Φ when the yk’s are

independent and identically distributed variables.
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In a survey sampling setting, we take G =
M̂d

N
and F =

M

N
in (2.10). Hence, we get by using

the linearity of the derivative:

T

(
M

N
;
M̂d −M

N

)
= T

(
M

N
;

1

N

∑
k∈U

(dkIk − 1)δyk

)

=
∑
k∈U

(dkIk − 1)T

(
M

N
;
δyk
N

)
.

By using again the definition of the derivative (2.10) and the α-homogeneity of T (assumption

F1), we get

T

(
M

N
;
δyk
N

)
= lim

ε→0

T (MN +
εδyk
N )− T (MN )

ε

= N−α lim
ε→0

1

ε
(T (M + εδyk)− T (M)) .

Hence,

T

(
M

N
;
M̂d

N
− M

N

)
= N−α

∑
k∈U

(dkIk − 1) lim
ε→0

1

ε
(T (M + εδyk)− T (M)) . (2.12)

The quantity of interest is now limε→0
1

ε
(T (M + εδyk)− T (M)) which corresponds also to a

directional derivative. This derivative is referred to as the influence function by Deville [1999b]:

Definition 2.5. The influence function of T is given by:

IT (M,y) = lim
ε→0

T (M + εδy)− T (M)

ε

where δy is the Dirac measure at point y.

Following similar steps as in robust statistics leads us naturally to the slightly different definition

of the influence function as suggested by Deville [1999a] in a finite population setting.

Definition 2.6. The linearized variable uk, for all k ∈ U of Φ are the values of the influence

function IT computed at y = yk, namely

uk = IT (M,yk), k ∈ U.

Hence, in a finite population setting, relations (2.9) and (2.12) give

N−α(T (M̂d)− T (M)) = N−α(
∑
k∈s

dkuk −
∑
k∈U

uk) + RemT

(
M̂d

N
,
M

N

)
. (2.13)
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Remark 1. It is worth mentioning also that (2.12) remains valid as long as the estimator

of the measure M may be written as a weighted sum of yk’s population values. The Hansen

and Hurvitz estimator of M (Hansen and Hurvitz [1943]), usually used with sampling designs

with replacement, may be also written in this form (Chauvet and Goga [2013a]) as well as

the nonparametric estimator of M (Goga and Ruiz-Gazen [2014a]) presented in more detail in

Section (2.2).

Remark 2. For the total ty =
∫
ydM(y), the linearized variable uk is simply yk and the

expansion (2.12) becomes

N−1(t̂yd − ty) = N−1(
∑
k∈s

dkuk −
∑
k∈U

uk).

As remarked by Beaumont et al. [2013], the influence function is not related to the sampling

design or to the estimator of Φ. By consequence, it cannot be used to measure how robust

a sampling design or an estimator is to outlying values. The influence function, and more

exactly, the linearized variables uk, k ∈ U are quantities which serve as a tool for computing the

asymptotic variance of Φ̂d. The expression of uk depends on the parameter of interest Φ and

they are unknown even for the sampled individuals. It is worth mentioning that the linearized

variables play an important role in the estimation of the parameter Φ. To improve the quality

of Φ̂d at the sampling stage with for example, proportional to size sampling designs or at the

estimation stage with GREG-type estimators, the statistician should take into account the

expression of uk. Section (2.2) and Section (3.1.7) present these issues.

Deville [1999b] provides many practical rules for computing uk for rather complicated parame-

ters Φ. In particular, an important property of α-homogenous functionals is that∑
k∈U

IT (M,yk) = αT (M),

so that for functionals 0-homogeneous, we obtain that
∑

k∈U IT (M,yk) = 0, condition usually

assumed in robust statistics. Moreover, it is straightforward to obtain that for α-homogenous

functionals, the influence function is (α− 1)-homogeneous, namely

IT (rM, y) = rα−1IT (M,y).

To avoid theoretical difficulties encountered in the computation of uk, numerical approximations

of uk by jackknife are possible (Davison and Hinkley [1997]).

Let consider again the Gini index from Example 1. The expression of the linearized variable uk,

k ∈ U for the Gini index (Binder and Kovacevic [1995], Deville [1999a]) is:

uk,G = 2F (yk)
yk − yk,<

ty
− yk

1 +G

ty
+

1−G
N

(2.14)
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where G is the Gini index, F the empirical distribution function, yk,< the mean of yj lower than

yk and ty the total of the yk on U .

Concerning the regression coefficient of the logistic regression from Example 2, the linearized

variable uk,β is a two-dimensional vector given by (Goga and Ruiz-Gazen [2014b]):

uk,β = −J−1(β) · zk(yk − µ(zTk β)), (2.15)

where J(β) is the Jacobian with respect to β of the functional T defined in (2.7).

Consider now the remainder term from the expansion given by (2.9). The goal is to obtain that

this remainder is of order op(n
−1/2) and suppose for that the additional assumption of Fréchet

differentiability of the functional T. In absence of this strong assumption, von Mises [1947] and

Serfling [1980] recommend computing higher-order derivatives of Φ and prove that they are

going to zero in probability.

Assumption F2. The functional T is Fréchet differentiable at M ∈ M if there exists a

functional T (M ; ∆) linear in ∆ such that

lim
M̃→M

T (M̃)− T (M)− T (M ; M̃ −M)

d(M̃,M)
= 0,

where d is a distance between M̃ and M.

This definition is due to Huber [1981] (see also Huber and Ronchetti [2009]). Serfling [1980]

and van der Vaart [1998]) considered the above definition with a norm instead of the distance

d. The advantage of Huber’s version of the Fréchet derivative is that it can be applied to a

functional without extension to a vector space. Remark also, that if T is Fréchet differentiable,

then it is Gateaux differentiable and the two derivatives coincide. This means that the derivative

T (M ; M̃ −M) from definition F2 is computed according to (2.10).

Then, the remainder from (2.9) depends on some distance function between M
N and an estimator

of this measure, in our case the HT estimator M̂d :

N−α(T (M̂d)− T (M)) = N−α(
∑
k∈s

dkuk −
∑
k∈U

uk) + o

(
d

(
M̂d

N
,
M

N

))
. (2.16)

Several metrics d such as the Prohorov, the bounded Lipschitz or the total variation distance

have been suggested in robust statistic (Huber and Ronchetti [2009], van der Vaart [1998]).

As remarked by Serfling [1980], the choice of the distance d should be done with respect to

two conflicting goals: this distance should be small enough so that the Fréchet differentiability

would be easier to obtain but not too small since n1/2d should be bounded in probability. Goga
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and Ruiz-Gazen [2014a] considered the total variation (pseudo) distance defined by:

dtv(M1,M2) = sup
h∈H

∣∣∣∣∫ h dM1 −
∫
h dM2

∣∣∣∣
with H = {h : R → R| supx |h(x)| ≤ 1}. In general, this distance is too large in the sense that

the requirement that n1/2d = Op(1) is not fulfilled (see Dudley [2002]). Fortunately, used in

this survey sampling context, dtv

(
M̂d
N , MN

)
= Op(n

−1/2) (lemma 2.7 from below). In Section

2.2, the result is extended to the nonparametric estimator M̂np/N (lemma 2.13).

Lemma 2.7. (Goga and Ruiz-Gazen [2014a]) Assume assumptions (S1) and (S2). Then,

dtv

(
M̂d

N
,
M

N

)
= Op(n

−1/2).

Proof. Let h ∈ H. Thus, for all k ∈ U, |h(yk)| ≤ 1 uniformly in h ∈ H and∫
h dM̂d −

∫
h dM =

∑
k∈s

dkh(yk)−
∑
k∈U

h(yk) =
∑
k∈U

(dkIk − 1)h(yk).

Following the same lines as in Breidt and Opsomer [2000], we have:

Ep
∣∣∣∣∫ h dM̂d/N −

∫
h dM/N

∣∣∣∣2 = N−2Vp

(∑
k∈s

dkh(yk)

)

≤

(
1− λ̃
λ̃N

+
nmaxk 6=l∈U |πkl − πkπl|

λ̃2n

)
1

N

∑
k∈U

h2(yk) = O(n−1)

uniformly in h by assumptions (S1) and (S2) and the fact that h ∈ H.

Note also that the same proof of lemma 2.7 works to prove that the bounded-Lipschitz dBL dis-

tance (Huber [1981], Huber and Ronchetti [2009]) between M̂d
N and M

N is also of order Op(n
−1/2).

The bounded-Lipschitz distance is defined as the total variation distance but the sup is con-

sidered over all bounded Lipschitz functions implying that dBL(M1,M2) ≤ dtv(M1,M2). This

distance is attractive since it metrizes the weak topology in M, whereas the total variation

doesn’t (Huber [1981], Huber and Ronchetti [2009]). Nevertheless, it is possible for a functional

to be Fréchet differentiable with respect to the total variation distance whereas it may not be

with respect to the bounded-Lipschitz distance.

Consider the following additional assumptions on the linearized variables uk, for all k ∈ U.

Assumption V3.

(a) limN→∞
1
N

∑
k∈U (N1−αuk)

2 <∞
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(b) supk∈U |N1−αuk| < C with C a positive constant not depending on N.

The stronger assumption V3 (b) is needed in Section 2.2. If the linearized variable is a vector

or a matrix, then these assumptions may be reformulated by considering the Euclidian norm

or some matrix norm. Remark that these assumptions are not very restrictive. Cardot et al.

[2010a] show that they are satisfied for elements of the functional principal components analysis

(see also Section 3.1), Chaouch and Goga [2010] for the geometric quantiles while Goga and

Ruiz-Gazen [2014b] show that they are satisfied for the odds-ratio.

Putting together lemma 2.7 and relation (2.16), the theorem providing the functional lineariza-

tion is obtained.

Theorem 2.8. (Functional linearization, Goga and Ruiz-Gazen [2014a]). Make assumptions

(F1), (F2) and (S1), (S2). Then, the HT substitution estimator Φ̂d fulfills

N−α
(

Φ̂d − Φ
)

= N−α

(∑
k∈s

dkuk −
∑
k∈U

uk

)
+ op(n

−1/2)

= N−α(t̂ud − tu) + op(n
−1/2) (2.17)

Moreover, if the linearized variable uk, k ∈ U satisfy assumption V3 (a), then N−α
(

Φ̂d − Φ
)

=

Op(n
−1/2).

By consequence, Φ̂d is ADU and consistent with respect to the sampling design. Remark also,

that given the particular form of the measure M and of its estimator, the first term from the

right-left side of (2.17) may be written into an integral form. More exactly, we have

∑
k∈s

dkuk −
∑
k∈U

uk =

∫
IT (M,y)dM̂d(y)−

∫
IT (M,y)dM(y)

and for functionals 0-homogeneous,
∫
IT (M,y)dM(y) = 0.

I finish this section by giving a short comment about the relationship of the results presented

above with the theory of empirical process which has received lately a large success in classical

statistics. As already remarked at the beginning of this section,
M

N
is the empirical distribution

and the empirical distribution function defined by :

FN (t) =
1

N

∑
k∈U

1{yk≤t}

is a function of the empirical distribution. As a function of t ∈ R, FN is a process belonging

to D[0, 1], the space of cadlag functions: continue à droite, limite à gauche. The Donkster’s

theorem gives the convergence in distribution of the empirical process
√
N(FN −F) in D[0, 1].
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In a survey sampling setting, this approach is rather new and realized for the moment only

for few sampling designs, the ones for which the independence assumption of observations is

guaranteed. This is the case for example for the with replacement samplings and the Bernoulli

or Poisson sampling designs (Breslow and Wellner [2007], Saegusa and Wellner [2013]). Also,

it is worth mentioning that, the results are obtained at the price of numerous assumptions and

lengthy proofs.

In classical statistics, nonlinear functionals Φ are usually considered with respect to the empir-

ical distribution function FN . The functional delta method is a powerful method to linearize

such functionals. The remainder term is considered with respect to the sup norm between FN

and the true distribution function F which is going to zero thanks to the Glivenko-Cantelli’s

theorem. Fernholz [1983] and van der Vaart [1998] considered the case of Hadamard differen-

tiable functionals Φ. Nevertheless, in a survey sampling setting, this approach has been applied

only in the particular case of simple random sampling without replacement by Motoyama and

Takahashi [2008] and many additional assumptions are supposed in order to check the tight-

ness condition of the processus FN (see 3.3 for the definition of tightness) needed to prove the

consistency of the design-based estimator of the empirical distribution function.

Asymptotic normality

In robust statistics, the first-order term from the expansion (2.11) is the mean of the Hampel’s

influence functions computed at yk which are independent and identically distributed (since yk

are identically distributed variables). By the central limit theorem, the asymptotic normality of

T (FN ) is obtained as soon as the remainder term RemT (FN ,F) is going to zero in probability.

Unfortunately, in a survey sampling framework, we cannot use the same arguments as in robust

statistics in order to obtain the asymptotic normality of T (M̂/N). But we can use the fact that

the first-order term is the error between the HT estimator
∑

k∈s dkuk and the total
∑

k∈U uk.

Then, if the linearized variable N1−αuk satisfies regularity assumptions from Section 1.4, then

N−α
(

Φ̂d − Φ
)

is also asymptotically normal distributed with asymptotic variance equal to the

HT variance of
∑

k∈s dkuk, namely

AVp(Φ̂d) =
∑
k∈U

∑
k∈U

(πkl − πkπl)dkdlukul. (2.18)

Work is actually in progress in order to check the validity of assumptions from Section 1.4 for

uk computed for different parameters of interest.

Variance estimation

From 2.18, we can see that the asymptotic variance of Φ̂d can not be computed since the double

sums are on the population and the linearized variables uk are unknown even for the sampled

individuals. The quantities uk are estimated by ûk and they are plugged-in the HT variance

estimator from (1.3) leading to the following variance estimator of Φ̂d :

V̂ (Φ̂d) =
∑
k∈s

∑
k∈s

πkl − πkπl
πkl

dkdlûkûl. (2.19)
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Remark 3. As remarked in Goga et al. [2009] and Langel and Tillé [2013], the estimator of

uk are in fact the influence function of T computed with respect to the measure estimator M̂d,

uk = IT (M̂d; yk) and coincides with the estimator obtained by using the approach of Demnati

and Rao [2004]. In a recent work, Escobar and Berger [2013] suggest a new jackknife replicate

variance estimator based on numerical approximation of ûk.

The variance estimator V̂ (Φ̂d) is no-longer unbiased for AVp(Φ̂d), but it can be proven to be

consistent under assumptions on the sampling design and the linearized variables. Let the

following decomposition:

V̂ (Φ̂d)−AVp(Φ̂d) =
(
V̂ (Φ̂d)− ÂVp(Φ̂d)

)
+
(
ÂVp(Φ̂d)−AVp(Φ̂d)

)
,

where ÂVp(Φ̂d) is the HT variance estimator with the true uk, k ∈ U :

ÂVp(Φ̂d) =
∑
k∈s

∑
k∈s

πkl − πkπl
πkl

dkdlukul.

Using theorem 1.5, the estimator ÂVp(Φ̂d) is consistent for AVp(Φ̂d) if the linearized variable

N (1−α)uk satisfies assumption (V2) and the sampling design, assumptions (S1), (S2) and (S4).

Taking into account these considerations, this result is presented most of the time as an as-

sumption. I do adopt the same attitude in the next of this work. As for the first difference, we

need additional assumptions on the estimators ûk of uk.

Theorem 2.9. (Variance estimation) Make assumptions (S1), (S2) and suppose that the lin-

earized variable uk satisfies assumption V3(a) and nN−2α
∑

k∈U (ûk − uk)2 = op(1). If the HT

variance estimator ÂVp(Φ̂d) is consistent for AVp(Φ̂d), then

n

N2α
(V̂ (Φ̂d)−AVp(Φ̂d)) = op(1).

Again, these assumptions on ûk are satisfied for elements of the functional principal components

analysis (Cardot et al. [2010a]), for the geometric quantiles (Chaouch and Goga [2010]) and for

the odds-ratio (Goga and Ruiz-Gazen [2014b]).
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2.2 Taking into account the auxiliary information through non-

parametrics

As stated in Section 1.5, auxiliary information is useful for improving on the estimation of a

total in terms of efficiency and many recent works have been dedicated to this item by consid-

ering parametric (Särndal et al. [1992]) or nonparametric models: Breidt and Opsomer [2000]

proposed local linear estimators and Breidt et al. [2005] and Goga [2005] used nonparametric

spline regression. Improving the estimation of nonlinear parameters by taking into account

auxiliary information was less addressed. Deville [1999a] suggested estimating Φ by consider-

ing calibration weights from (1.15) and Berger and Skinner [2003] applied this method for the

estimation of the low-income proportion. Särndal et al. [1992] treat briefly the estimation of

the ratio by using a linear model. A special attention was addressed to the estimation of the

empirical distribution function and quantiles (Dorfman [2009]).

Roughly speaking, when examining (2.1) :

Φ̂− Φ '
∑
k∈s

dkuk −
∑
k∈U

uk,

we can see that, if we estimate in an efficient way tu =
∑

k∈U uk, namely the variance given in

(2.2) is small, we will achieve a small approximate variance and good precision for Φ̂.

When estimating a total, note that the asymptotic variance of the GREG estimator depends on

the residuals of the study variable on the auxiliary variable (see 1.18). Because linearized vari-

ables may have complicated mathematical expressions, fitting a linear model onto a linearized

variable may not be the most appropriate choice. This may occur even if the study and the

auxiliary variables have a clear linear relationship, as illustrated in the example given in Goga

and Ruiz-Gazen [2014a]. In that example, a dataset of size 1000, extracted from the French La-

bor Force Survey was considered and yk (the wages of person k in 2000) was the study variable

and xk (the wages of person k in 1999) the auxiliary variable. We considered the problem of

estimating the Gini index. The linearized variable uk,G, k ∈ U for the Gini index is given in

(2.14):

uk = 2F (yk)
yk − yk,<

ty
− yk

1 +G

ty
+

1−G
N

where G is the Gini index, F the empirical distribution function, yk,< the mean of yj lower

than yk and ty the total of the yk on U . It is a complex function of the study variable yk,

k ∈ U . In the left (resp. right) graphic of Figure 2.1, the study variable yk is plotted (resp. the

linearized variable uk) on the y-axis and the auxiliary variable xk is plotted on the x-axis. The

relationship between the study variable and the auxiliary variable is almost linear; however the

relationship between the linearized variable of the Gini index and the auxiliary information is

no longer linear. The consequence of this is that we cannot increase the efficiency of estimating
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a Gini index if we take the auxiliary information into account through a linear GREG estimator.

Therefore, nonparametric models should be preferred to estimate nonlinear parameters Φ.

The class of estimators proposed in Goga and Ruiz-Gazen [2014a] is based on a nonparametric

model-assisted approach. A calibration approach may be used also and it is presented in section

(2.2.3). Interestingly, the estimators can be written as a weighted sum of the sampled observa-

tions, allowing a unique weight variable that can be used to estimate any nonlinear parameter

associated with any study variable of the survey. Having a unique system of weights is very

important in multipurpose surveys such as the EU-SILC survey.

In the next, nonparametric weights wnp
s = (wnp

ks )k∈s not depending on the study variable will

be constructed in order to estimate efficiently the total tu.
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Figure 2.1: Left plot: yk: the wages of person k in 2000 against zk: the wages of person k in
1999. Right plot: uk: linearized variable of the Gini index for the wages in 2000 for person k

against zk: the wages of person k in 1999.

2.2.1 Penalized B-spline estimators for nonlinear parameters

We suppose that the auxiliary information is given by the univariate variable X of values xk,

known for all the population units k ∈ U. We have complete auxiliary information. We suppose

without loss of generality that all xk have been normalized and lie in [0, 1].

Let the superpopulation model relating the auxiliary information xk to the linearized variable

uk given by

ξ′ : uk = g(xk) + ηk. (2.20)
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Remark that it is not really a model since we do not observe the linearized variables uk. It can be

viewed as a tool used to construct weights. If the linearized variable uk is a linear combination

of study variables (as for the ratio R) and if linear models fit these variables well, then a

linear model will also fit uk well. In this case, we can consider the linear regression function

g(xk) = x′kβ which yields the generalized regression estimator (GREG) of tu extensively studied

by Särndal et al. [1992]. The GREG estimator is efficient if the model fits the data well, but if

the model is misspecified, the GREG estimator exhibits no improvement over the HT estimator

(from the variance point of view) and may even lead to a loss of efficiency. This is the case of the

Gini index for instance and one way of guarding against model failure is to use nonparametric

regression which does not require a predefined parametric mathematical expression for g.

Concerned by the estimation of finite population totals, Goga [2005] used B-spline functions to

approximate the unknown regression function and this work was extended later by Goga and

Ruiz-Gazen [2014a] to penalized B-spline regression. Goga and Ruiz-Gazen [2014a] proved the

asymptotic results of estimators for finite population totals as well as for nonlinear parameters.

In the following, I will present only results concerning the estimation of nonlinear parameters.

Ruppert et al. [2003] state that “a spline is a thin strip of flexible timber. A mathematical

spline is so named because of the analogy of a flexible function able to adapt to the data”. The

spline functions are used in statistics because of their flexibility to model nonlinear trends in

the data that are difficult to be handled parametrically. Using higher-degree polynomials to

explain nonlinear trends in the data has a number of disadvantages such as the high oscillatory

behavior of the approximating polynomial (Agarwal and Studden [1980]). Moreover, it may

be a difficult task to find the degree of the polynomial to be used and sometimes, data cannot

be approximated by a single polynomial. Instead, it is more advisable to use spline functions

because, besides their numerical stability and local behavior that is less dependent on their

behavior elsewhere, they present ease of implementation and interpretability.

For a fixed m > 1, the set SK,m of spline functions of order m, with K equidistant interiors

knots 0 = ξ0 < ξ1 < . . . < ξK < ξK+1 = 1 is the set of piecewise polynomials of degree m − 1

that are smoothly connected at the knots (Zhou et al. [1998]):

SK,m = {t ∈ Cm−2[0, 1] : t(z) is a polynomial of degree (m− 1) on each interval [ξi, ξi+1]}.

For m = 1, SK,m is the set of step functions with jumps at knots. For each fixed set of knots,

SK,m is a linear space of functions of dimension q = K + m. A basis for this linear space is

provided by the B-spline functions (Schumaker [1981], Dierckx [1993]) B1, . . . , Bq defined by

Bj(x) = (ξj − ξj−m)
m∑
l=0

(ξj−l − x)m−1
+

Πm
r=0,r 6=l(ξj−l − ξj−r)

where (ξj−l − x)m−1
+ = (ξj−l − x)m−1 if ξj−l ≥ x and zero, otherwise. There is no general rule

giving the exact number of knots but it should be large enough to have enough points between

knots. Ruppert et al. [2003] recommend that no more than 30-40 knots should be used and
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they give a simple rule for choosing K. As for the degree m, Ruppert et al. [2003] recommend

m = 3 or m = 4. Figure 2.2 exhibits the six B-spline basis functions for K = 3 interior knots

and m = 3.
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Figure 2.2: B-spline basis functions for K = 3 interior knots and m = 3

For all j = 1, . . . , q, each function Bj has the knots ξj−m, . . . , ξj with ξr = ξmin(max(r,0),K+1) for

r = j −m, . . . , j (Zhou et al. [1998]) which means that its support consists of a small, fixed,

finite number of intervals between knots. Moreover, B-splines are positive functions with a total

sum equal to unity:

q∑
j=1

Bj(x) = 1 , x ∈ [0, 1]. (2.21)

For the same order m and the same knot location, one can use the truncated power basis

(Ruppert and Carroll [2000]) given by 1, x, x2, . . . , xm−1, (x − ξ1)m−1
+ , . . . , (x − ξK)m−1

+ . The

B-spline and the truncated power bases are equivalent in the sense that they span the same set

of spline functions SK,m (Dierckx [1993]). Nevertheless, as indicated by Ruppert et al. [2003],

“the truncated power bases have the practical disadvantage that they are far from orthogonal”,

which leads to numerical instability especially if a large number of knots are used.

One way to overcome the issue of knot number, is to consider many knots and to constrain

their influence by introducing a penalty. To estimate the unknown regression function g at

the population level, Goga and Ruiz-Gazen [2014a] use spline approximation and a penalized



Chapter 2. Functional Linearization 32

least squares criterion. We define the spline basis vector of dimension q × 1 as bT (xk) =

(B1(xk), . . . , Bq(xk)), k ∈ U. The penalized spline estimator of g(xk) is given by

g̃u,k(λ) = bT (xk)θ̃u(λ) (2.22)

with θ̃u(λ) as the least squares minimizer of

N∑
k=1

(uk − bT (xk)θ)2 + λ

∫ 1

0
[(bT (t)θ)(`)]2dt, (2.23)

where (`) represents the `-th derivate with ` ≤ m − 1. The solution of (2.23) is a ridge-type

estimator,

θ̃u(λ) =

(∑
k∈U

b(xk)b
T (xk) + λD`

)−1 ∑
k∈U

b(xk)uk (2.24)

where D` is the squared L2 norm applied to the `-th derivative of bTθ. Because the derivative

of a B-spline function of order m may be written as a linear combination of B-spline functions

of order m− 1, for equidistant knots we obtain that D` = K2`∇′`R∇` where the matrix R has

elements Rij =
∫ 1

0 B
(m−`)
i (t)B

(m−`)
j (t)dt with B

(m−`)
i as the B-spline function of order m−` and

∇` as the matrix corresponding to the `-th order difference operator (Claeskens et al. [2009]).

The amount of smoothing is controlled by λ > 0. The case λ = 0 results in an unpenalized

B-spline estimator the asymptotic properties of which have been extensively studied in the

literature (Agarwal and Studden [1980], Burman [1991], and Zhou et al. [1998], among others).

The case λ → ∞ is equivalent to fitting a (` − 1)-th degree polynomial. The theoretical

properties of penalized splines with λ > 0, have been studied only recently by Cardot [2002a],

Cardot [2002b], Hall and Opsomer [2005], Kauermann et al. [2009] and Claeskens et al. [2009].

The pseudo 1 design-based estimators of g̃u,k are

ĝu,k(λ) = bT (xk)θ̂u(λ) (2.25)

where

θ̂u(λ) =

(∑
k∈s

dkb(xk)b
T (xk) + λD`

)−1∑
k∈s

dkb(xk)uk (2.26)

1This appellation is used since ĝu,k(λ) can not be computed because uk is unknown.
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is the pseudo design-based estimator of θ̃u(λ). Finally, the penalized B-spline model-assisted

estimator of tu =
∑

k∈U uk is as follows:

t̂np
uw(λ) =

∑
k∈s

dk(uk − ĝu,k(λ)) +
∑
k∈U

ĝu,k(λ)

=
∑
k∈s

dkuk −

(∑
k∈s

dkb(xk)−
∑
k∈U

b(xk)

)T
θ̂u(λ). (2.27)

This indicates that t̂np
uw(λ) may be written as a GREG estimator that uses the vectors b(xk) as

regressors of dimension q×1 with q going to infinity and a ridge-type regression coefficient θ̂u(λ).

The following proposition states that the HT estimator of the residuals uk− ĝu,k(λ) is zero. This

property is a consequence of the fact that the B-spline functions satisfy
∑q

j=1Bj(x) = 1.

Proposition 2.10. 1. The nonparametric estimator t̂np
uw(λ) is the total of predictions ĝu,k(λ) :

t̂np
uw(λ) =

∑
k∈U

ĝu,k(λ) =
∑
k∈s

wnp
ks (λ)uk,

with weights given by

wnp
ks (λ) = dkb

T (xk)

(∑
k∈s

dkb(xk)b
T (xk) + λD`

)−1 ∑
k∈U

b(xk), k ∈ s. (2.28)

2. The weights wnp
ks (λ) satisfy the calibration constraints:∑

k∈s
wnp
ks (λ)xjk =

∑
k∈U

xjk, j = 0, . . . , `− 1. (2.29)

Note the similarity with the GREG weights obtained in the case of a linear model when the

variance of errors is linearly related to the auxiliary information (see proposition 1.6). The

above calibration constraints mean that polynomials of degree lower than ` are left unchanged

by the penalization. In particular,
∑

k∈sw
np
ks (λ) = N and

∑
k∈sw

np
ks (λ)xk =

∑
k∈U xk.

Regression splines: For λ = 0, we obtained the unpenalized B-spline estimator studied

by Goga [2005]. Based on assumptions regarding the sampling design and the variable Y,
(assumptions (S1), (S2) and (V3b)) and assumptions regarding the distribution of X and the

knots number (assumptions (B1), (B2) from below), Goga [2005] proved that the B-spline

estimator for the total ty is ADU and consistent regardless the smoothness of the regression

function of the underlying nonparametric model. We note that for m = 1, the estimator t̂np
uw(0)

becomes the well-known poststratified estimator.

Penalized splines using truncated polynomial basis functions : Breidt et al. [2005] used

the truncated polynomial basis functions and a penalized least square criterion for estimating

finite populations totals. The estimator obtained by Breidt et al. [2005] is equivalent to the

estimator t̂np
uw(λ) after a suitable changing of the penalization matrix. In fact, Claeskens et al.
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[2009] exhibits the relationship between the penalization matrix obtained with a truncated

polynomial basis functions and the matrix D` from our case.

Let us resume the above construction: we improve the estimation of tu by considering the

nonparametric estimator t̂np
uw(λ) with the weights wnp

ks (λ) given by (2.28). The same weights

may be used to estimate the nonlinear parameter Φ = T (M) by using the functional approach

described in section 2.1.

Definition 2.11. The nonparametric estimator of M is given by

M̂np(λ) =
∑
k∈s

wnp
ks (λ)δyk

Definition 2.12. The nonparametric substitution estimator for Φ is obtained by plugging M̂np

into (2.4):

Φ̂np(λ) = T (M̂np(λ)).

Let illustrate the computation of Φ̂np using again the Gini index (Example 1) and parameters

defined by implicit equations, such as the odds-ratio (Example 2). The nonparametric estimator

for G given in (2.6) is obtained by simply replacing M with M̂np. Hence,

Ĝ
np

=

∑
sw

np
ks (2F̂ np(yk)− 1)yk∑

sw
np
ks yk

, (2.30)

where F̂ np(y) =

∫
1{η≤y}dM̂

np(η)∫
dM̂np(y)

=

∑
k∈sw

np
ks1{yk≤y}∑

k∈sw
np
ks

.

Let Φ be defined as the unique solution of an implicit estimating equation
∑

k∈U tk(Φ) = 0

that may be written in a functional form as
∫
t(Φ)dM = 0. We replace M with M̂np and the

nonparametric sample-based estimator of Φ is the unique solution of the sample-based estimating

equation
∫
t(Φ)dM̂np =

∑
k∈sw

np
ks tk(Φ̂

np) = 0. The regression coefficient given in (2.7) and used

for the estimation of the odds-ratio may be estimated by using this method.

2.2.2 Asymptotic properties

The nonparametric estimator Φ̂np is doubly nonlinear, with nonlinearity due to the parameter

Φ and nonlinearity due to the nonparametric estimation. Our main goal is to approximate Φ̂np

by using a linear estimator (HT type) which will allow us to compute the asymptotic variance

of Φ̂np. Roughly speaking, this approximation will be accomplished in two steps: first, we will

linearize Φ as:

Φ̂np − Φ ' t̂np
uw(λ)− tu
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and next, we will linearize the nonparametric estimator t̂np
uw(λ) obtained in step one by a gen-

eralized difference-type estimator :

t̂np
uw(λ)− tu ' t̃diff

u,x(λ)− tu,

where t̃diff
u,x(λ) will be specified later (formula 2.31 from below).

The following assumptions on B-spline functions are needed in order to obtain the main result

of this section.

Assumptions on B-splines

Assumption B1. Assume that there exists a distribution function Q(x) with strictly posi-

tive density on [0, 1] such that supx∈[0,1] |QN (x) − Q(x)| = o(K−1), with QN (x) the empirical

distribution of (xi)
N
i=1.

Assumption B2. Assume that the number of interior knots satisfies:

(a) K = o(N);

(b) K = O(na) with 0 < a < 1/3.

Assumption B3. The penalty parameter λ is such that K` = (K+m−`)(λc̃)1/(2`)N−1/(2`) <

1 where c̃ = c(1 + o(1)) with c a constant that depends only on ` and the design density.

These assumptions are classical in nonparametric regression (Agarwal and Studden [1980], Bur-

man [1991], Zhou et al. [1998]); (B1) means that asymptotically, there is no sub-interval in [0, 1]

without points xk and (B2) ensures that the dimension of the B-spline basis goes to infinity

but not too fast when the population and the sample sizes go to infinity. Assumption (B3)

concerns the penalty λ as used by Claeskens et al. [2009] which guarantees the invertibility of∑
k∈U b(xk)b

T (xk) + λD` and of the matrix
∑

k∈s dkb(xk)b
T (xk) + λD`, whatever the sample

s is (Goga and Ruiz-Gazen [2014a]).

The first linearization step is a first-order expansion of Φ̂np with the remainder going to zero

and it is the extension of theorem 2.8 to the nonparametric case. In order to obtain it, we need

to evaluate again the distance dtv between the nonparametric estimator M̂np(λ)
N and the true M

N .

Let h ∈ H and denote hk = h(yk). We have that for all k ∈ U, |hk| ≤ 1 uniformly in h ∈ H.
Then ∫

hdM̂np(λ)−
∫
hdM =

∑
k∈s

wnp
ks (λ)hk −

∑
k∈U

hk

=
∑
k∈s

dk(hk − ĝh,k(λ)) +
∑
k∈U

ĝh,k(λ)−
∑
k∈U

hk,
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where ĝh,k(λ) is obtained from (2.25) for uk replaced by hk. Following the same steps as in the

proof of lemma 2.7, we need to evaluate

Ep

∣∣∣∣∣
∫
h d

(
M̂np(λ)

N

)
−
∫
h d

(
M

N

)∣∣∣∣∣
≤ Ep

∣∣∣∣∣ 1

N

∑
k∈U

(dkIk − 1) (hk − g̃h,k(λ))

∣∣∣∣∣+ Ep

∣∣∣∣∣ 1

N

∑
k∈U

(dkIk − 1) (g̃h,k(λ)− ĝh,k(λ))

∣∣∣∣∣ ,
where g̃h,k(λ) = bT (xk)θ̃h(λ) and θ̃h(λ) is obtained from (2.24) for uk replaced by hk. From the

proof of lemma 2.7, we see that the first term from the right-side is of order O(n−1/2) uniformly

in h if

(A∗)
1

N

∑
k∈U

g̃2
h,k(λ) = O(1) uniformly in h ∈ H.

If the second term from the right-side satisfies

(A∗∗) Ep

∣∣∣∣∣ 1

N

∑
k∈U

(dkIk − 1) (g̃h,k(λ)− ĝh,k(λ))

∣∣∣∣∣ = O(n−1/2) uniformly in h ∈ H,

then the total variation distance between M̂np(λ)/N and M/N will be of order Op(n
−1/2). We

can remark that the above reasonings do not make use of the fact that the penalized B-spline

regression has been used. As a consequence, the convergence of a nonparametric estimator of

M will be ensured if (A∗) and (A∗∗) are fulfilled (Goga and Ruiz-Gazen [2014a]).

Using classical assumptions from a B-spline framework and mild assumptions regarding the

sampling design, Goga and Ruiz-Gazen [2014a] prove that (A∗) and (A∗∗) are fulfilled in the

case of penalized B-spline regression (lemma 2.13 from below).

Lemma 2.13. Make assumptions (S1) and (S2) on the sampling design and (B1)-(B3) on the

B-spline functions. Then:

1. ||θ̃h(λ)|| = O(K1/2) uniformly in h ∈ H, where || · || is the usual Euclidian norm.

2. Ep||θ̃h(λ)− θ̂h(λ)||2 = O
(
K3

n

)
uniformly in h ∈ H.

In particular, (A∗∗) Ep
∣∣ 1
N

∑
k∈U (dkIk − 1) (g̃h,k(λ)− ĝh,k(λ))

∣∣ = o
(
n−1/2

)
uniformly in h.

Lemma 2.14. Under the assumptions of lemma 2.13, we get

dtv

(
M̂np(λ)

N
,
M

N

)
= Op(n

−1/2).

The following matrix norms will be used in the proofs of these two lemmas: || · ||∞ defined for

a matrix A = (ai,j)
q
i,j=1 by ||A||∞ = maxqi=1

∑q
j=1 |aij | and || · ||2, the spectral norm defined by

||A||2 = supa,||a||=1 aTATAa.
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The proofs of these two lemmas are based on results from nonparametric statistic and two

lemmas from Goga [2005]. More exactly, Zhou et al. [1998] showed that∣∣∣∣∣
∣∣∣∣∣N−1

∑
k∈U

b(xk)b
T (xk)

∣∣∣∣∣
∣∣∣∣∣
2

= O(K−1) and

∣∣∣∣∣∣
∣∣∣∣∣∣N
(∑
k∈U

b(xk)b
T (xk)

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣
∞

= O(K).

Claeskens et al. [2009] extended this result for penalized splines showing that∣∣∣∣∣∣
∣∣∣∣∣∣N
(∑
k∈U

b(xk)b
T (xk) + λD`

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣
∞

= O(K).

Proof. (of lemma 2.13) We have

θ̃h(λ) =

(
N−1(

∑
k∈U

b(xk)b
T (xk) + λD`)

)−1(∑
U

b(xk)hk/N

)

By using that supk∈U |h(yk)| ≤ 1 and following the same lines as in Goga [2005], we get that

||
∑

U b(xk)hk/N || = O(K−1/2) uniformly in h. Hence, ||θ̃h(λ)|| = O(K1/2) uniformly in h.

For point 2, the convergence of θ̂h(λ), the difficult part was to bound the inverse of the matrix∑
k∈s dkb(xk)b

T (xk) + λD`. Goga and Ruiz-Gazen [2014a] showed that

Ep

∣∣∣∣∣∣
∣∣∣∣∣∣N
(∑

k∈s
dkb(xk)b

T (xk) + λD`

)−1

−

(∑
k∈U

b(xk)b
T (xk) + λD`

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

= O

(
K4

n

)
.

Proof. (of lemma 2.14) In order to prove that the distance between M̂np/N and M/N is going

to zero, it suffices to show that relations (A∗) and (A∗∗) are fulfilled. We have that g̃h,k(λ) =

bT (xk)θ̃h(λ). Hence,

1

N

∑
k∈U

g̃2
h,k(λ) ≤ ||θ̃h(λ)||2

∣∣∣∣∣
∣∣∣∣∣ 1

N

∑
k∈U

b(xk)b
T (xk)

∣∣∣∣∣
∣∣∣∣∣
2

= O(1),
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uniformly in h, by using ||N−1
∑

k∈U b(xk)b
T (xk)||2 = O(K−1) (lemma 6.2 from Zhou et al.

[1998]). The property (A∗∗) results since we have

Ep

∣∣∣∣∣ 1

N

∑
k∈U

(dkIk − 1) (g̃h,k(λ)− ĝh,k(λ))

∣∣∣∣∣ ≤
√√√√Ep

∣∣∣∣∣
∣∣∣∣∣ 1

N

∑
k∈U

(dkIk − 1) bT (xk)

∣∣∣∣∣
∣∣∣∣∣
2

· Ep||θ̃h(λ)− θ̂h(λ)||2

= o(n−1/2)

for K = O(na) with a < 1/3.

Lemma 2.14 and theorem 2.8 provide the first linearization step, by which the nonparamet-

ric estimator Φ̂np(λ) is asymptotically equivalent to a nonparametric model-assisted estimator

t̂np
uw(λ) for

∑
k∈U uk.

Theorem 2.15. (First linearization step) (Goga and Ruiz-Gazen [2014a]) Make assumptions

(F1), (F2) on the functional T and assumptions (S1), (S2) on the sampling design. Assume in

addition that (B1)-(B3). Then, the nonparametric substitution estimator Φ̂np fulfills

N−α
(

Φ̂np(λ)− Φ
)

= N−α(t̂np
uw(λ)− tu) + op(n

−1/2)

= N−α

(∑
k∈s

wnp
ks (λ)uk −

∑
k∈U

uk

)
+ op(n

−1/2).

In theorem 2.16 from below, we obtain that t̂np
uw(λ) is asymptotically equivalent to the generalized

difference estimator given by:

t̃diff
u,x(λ) =

∑
k∈s

dk(uk − g̃u,k(λ)) +
∑
k∈U

g̃u,k(λ), (2.31)

where g̃u,k(λ) = bT (xk)θ̃u(λ) with θ̃u(λ) given by (2.23).

Theorem 2.16. (Second linearization step) (Goga and Ruiz-Gazen [2014a]) Make assumptions

from theorem 2.15. Assume in addition that the linearized variable uk satisfies V3 (b). Then,

the nonparametric estimator t̂np
uw(λ) is asymptotically equivalent to the generalized difference

estimator t̃diff
u,x(λ) given in (2.31) in the sense that

N−α(t̂np
uw(λ)− tu) = N−α(t̃diff

u,x(λ)− tu) + op(n
−1/2).

Combining both theorems, we obtain that the nonparametric estimator Φ̂np(λ) is asymptotically

equivalent to the nonparametric generalized difference estimator t̃diff
u,x(λ) and in particular:

N−α(Φ̂np(λ)− Φ) = Op(n
−1/2),



Chapter 2. Functional Linearization 39

implying that it is ADU and consistent for Φ. Moreover, the asymptotic variance of Φ̂np(λ) is

given by:

AVp(Φnp) =
∑
k∈U

∑
k∈U

(πkl − πkπl)dkdl(uk − g̃u,k(λ))(ul − g̃u,l(λ)) (2.32)

=
∑
k∈U

∑
k∈U

(πkl − πkπl)dkdl(uk − bT (xk)θ̃u(λ))(ul − bT (xl)θ̃u(λ)).

The asymptotic variance is in fact the HT variance for the residuals uk−bT (xk)θ̃u(λ) of the lin-

earized variable uk under the model ξ′ given in (2.20). This variance is similar to the asymptotic

variance, given in (1.18), of the GREG estimator for the total ty built under the linear model

(1.19). The smallest the residuals uk − bT (xk)θ̃u(λ), k ∈ U are, the best the estimator Φnp for

Φ is. Considering nonparametric models ξ′ as in (2.20) and B-spline regression provide good

prediction for rather complicated uk and lead to low residuals uk − bT (xk)θ̃u(λ). Nevertheless,

unlike the GREG estimators derived under a linear model, nonparametric model-assisted esti-

mators need xk to be known for all the individuals from the population. Goga and Ruiz-Gazen

[2014a] suggested a variance estimator for Φnp and gave assumptions under which the suggested

variance estimator is consistent for AVp(Φnp).

Remark 4. In the case of the estimation of finite population total ty =
∑

k∈U yk, than t̂np
yw(λ),

obtained for yk instead of uk, is the nonparametric estimator of ty. Theorem 2.16 gives than the

asymptotic behavior of this estimator.

Remark 5. In the case of the estimation of ty for B-spline functions of order m = 1 and λ = 0,

we obtain t̂np
yw(0), the poststratified estimator of ty with a number of post-strata going to infinity.

In this context, theorem 2.16 provides a detailed theoretical justification of the consistency of

the poststratified estimator, result claimed without proof in Deville [1999a].

Remark 6. A very important thing to be noticed is that the above asymptotic results are

obtained without supplementary assumptions upon the smoothness of the regression function g.

2.2.3 A calibration point of view for the unpenalized case

As Särndal [2007] stated, Deville and Särndal’s calibration is a different point of view even

if it leads (asymptotically) to an estimator equal to the model-assisted or GREG estimator

derived under a linear model (see Chapter 1 for a brief review of the method). This method

is very popular and used in statistical institutes. However, when the parameter of interest is

not a total, an obvious question rises: which are the calibration constraints now? And for the

moment, several authors tackled this issue and tried to answer this question (Särndal [2007]).

For example, Harms and Duchesne [2006] suggested a calibration method for quantiles and

Plikusas [2006] for the ratio or the covariance. Another calibration approach known as model-

calibration has been introduced by Wu and Sitter [2001] for estimating means and totals. If
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a known nonlinear model fits the data, Wu and Sitter [2001] suggested to calibrate on the

predictions under the suggested model. If the regression function is unknown, Montanari and

Ranalli [2005] suggested using local polynomial regression to estimate it and calibration on the

estimated predictions. This approach has been called nonparametric calibration. However, all

these approaches have important drawbacks: the sampling weights depend on the parameter to

estimate (Harms and Duchesne [2006], Plikusas [2006]) or on the study variable (Wu and Sitter

[2001], Montanari and Ranalli [2005]) entailing a loss of the multipurpose property.

The Deville and Särndal’s method is based on an implicit underlying assumption that the

relationship between the study and the auxiliary variable is linear. The main goal is to find

calibration weights when this relationship is no longer linear and/or the study parameter is

more complex than totals or means. In order to accomplish it, the calibration constraint must

be changed while keeping the property that the obtained weights do not depend on the study

variable or parameter.

A simple way to overcome all these difficulties is to consider calibration on the vector of the

B-spline basis functions b = (B1, . . . , Bq)
T (Goga and Ruiz-Gazen [2014c]). More exactly, the

B-spline calibration weights wcal,np
s = (wcal,np

ks )k∈s minimize the chi-squared distance Υs(w)

from (1.14) to the HT weights:

wcal,np
s = argminwΥs(w)

subject to ∑
k∈s

wcal,np
ks b(xk) =

∑
k∈U

b(xk). (2.33)

One can deduce (see also 1.15):

wcal,np
ks = dk − dkqkbT (xk)

(∑
k∈s

qkb(xk)b
T (xk)

πk

)−1(∑
k∈s

dkb(xk)−
∑
k∈U

b(xk)

)
, k ∈ s.

The vector of weights wcal,np
s depends only on the auxiliary variable they offer a great adapt-

ability with respect to the study parameter. In particular, the weights wcal,np
s satisfy∑

k∈s
wcal,np
s x`k =

∑
k∈U

x`k, for ` = 1, . . . , q.

The estimator Φcal,np built by using these weights will be approximated by

t̂cal,np
uw =

∑
k∈s

wcal,np
ks uk =

∑
k∈s

dkuk −

(∑
k∈s

dkb(xk)−
∑
k∈U

b(xk)

)T
β̂u(q−1),

where β̂u(q−1) =
(∑

k∈s dkqkb(xk)b
T (xk)

)−1∑
k∈s dkqkb(xk)uk with q = (qk)k∈s. The above

estimator is in fact the classical calibration estimator for the total tu =
∑

k∈U uk as in (1.16).
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Note also the similarity with the B-spline model-assisted estimator t̂np
uw given in (2.27) and

computed for λ = 0. In fact the two estimators coincide, t̂np
uw(0) = t̂cal,np

uw , if we take qk = 1 for

all k ∈ s in the chi-square distance Υs as stated in the proposition 2.17 from below.

The method we suggest is different from the nonparametric model-calibration as suggested by

Montanari and Ranalli [2005] for estimating means or totals. They considered calibration on

the estimated predictions obtained by using local polynomial regression. One way to extend

their method for an arbitrary parameter Φ and B-spline regression is given in the following.

The B-spline model-calibration weights wmcal
s = (wmcal

ks )k∈s minimize the chi-square distance

Υs(w) to the HT weights and subject to:∑
k∈s

wmcal
ks ĝu,k =

∑
k∈U

ĝu,k, (2.34)

where ĝu,k = bT (xk)θ̂u is the estimated prediction of uk under the model 2.20 with θ̂u obtained

from (2.26) for λ = 0. The Montanari and Ranalli’s weights are given by:

wmcal
ks = dk − dkqkĝu,k

(∑
k∈s

dkqkĝ
2
u,k

)−1(∑
k∈s

dkĝu,k −
∑
k∈U

ĝu,k

)
, k ∈ s. (2.35)

The estimator Φmcal built by using these weights will be approximated by

t̂mcal
uw =

∑
k∈s

wmcal
ks uk =

∑
k∈s

dkuk −

(∑
k∈s

ĝu,k −
∑
k∈U

ĝu,k

)∑
k∈s dkqkukĝu,k∑
k∈s dkqkĝ

2
u,k

.

Wu and Sitter [2001] showed that the ratio
∑

k∈s dkqkukĝu,k/
∑

k∈s dkqkĝ
2
u,k is not equal to 1

for nonlinear models and Montanari and Ranalli [2005] showed the same property for local

polynomial regression. This means that their model-calibration estimator is different from the

model-assisted estimator.

An important drawback with this approach is that the weights depend on uk. Besides the loss of

the multi-purpose property, the weights cannot be computed in this case since uk is not known.

We could have considered calibration on ĝû,k = bT (xk)θ̂û obtained for an estimator of uk, k ∈ s
but the weights so obtained would still have depended on the linearized variable and besides,

the asymptotic results would have been even more complicated.

By using the fact that the estimated prediction ĝu,k are linear combination of b(xk), we deduce

that the weights wcal,np
s also satisfy the calibration constraints given in (2.34). This is a very

important property of wcal,np
s since they have much simpler expression and besides, do not

depend on uk. However, as stated in the following proposition, there is a particular case for

which weights wcal,np
s and wmcal

s coincide, and are equal in this case to wnp
s (0).

Proposition 2.17. If qk = 1, for all k ∈ s, then wmcal
ks = wcal,np

ks = wnp
ks (0), for k ∈ s.

This property results from the particular relationship between the B-spline approach and the

multivariate linear model. Unlike nonlinear and local polynomial model calibration estimators
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as exhibited in Wu and Sitter [2001] and Montanari and Ranalli [2005]), the B-spline model-

calibration estimator built for qk = 1 is equal to the B-spline model-assisted estimator proving

that this property is true for models that are even more general than the multivariate linear

model.

Calibration on the B-spline functions as suggested in (2.33) consists in considering q calibration

constraints, where q is the dimension of the B-spline basis. Recall that q = K +m where K is

the number of interior knots and m is the order of the B-spline functions. As already mentioned,

low values of m are usually taken (m = 2 or m = 3). Considering a large number K of interior

knots leads to a large q, so many calibration constraints. Many difficulties may arise in these

situations as presented in Section 3.2. To overcome these difficulties, we can use the penalized

calibration and obtain the penalized B-splines weights wnp
s (λ) from (2.2.1).

Application of the suggested method on data extracted from the French Labor Force surveys

of 1999 and 2000 (results are not reported here) shows the good behavior of the suggested B-

spline calibration estimator. This new calibration approach is a promising one and work on this

topic is actually in progress. It concerns among others, the extension to multivariate auxiliary

information and relationship with model-based estimators (Goga and Ruiz-Gazen [2014c]).

2.2.4 Application on the French Labour Force Survey from 1999-2000

Let us consider a data set from the French Labor Force surveys of 1999 and 2000 as considered

by Goga et al. [2009] and Goga and Ruiz-Gazen [2014a]. The data consist of the monthly wages

(in euros) of 19,378 wage-earners who were sampled in both years. The study variable yk (resp.

the auxiliary variable zk) is the wage of person k in 2000 (resp. 1999).

The parameters to estimate here include the mean and the Gini index for the wages in 2000

using the wages in 1999 as auxiliary information. Goga and Ruiz-Gazen [2014a] has considered

also the poverty rate and Goga and Ruiz-Gazen [2014b] the odds-ratio but results are not re-

ported here. A simple random sampling without replacement of sizes 200, 500 and respectively,

1000 is considered and the following estimators for each parameter:

- the Horvitz-Thompson estimator (HT), which does not incorporate any auxiliary information,

- poststratified estimators (POST) with a different number of strata bounded at the empirical

quantiles for 1999 wages,

- the GREG estimator (GREG), which takes into account the 1999 wages as auxiliary informa-

tion using a simple linear model,

- B-spline estimators (BS(m) where m denotes the spline order), which take into account the

wages from 1999 as auxiliary information by using a nonparametric model with different num-

bers of knots (K) located at the quantiles of the empirical distribution for wages from 1999.

The m = 2 and m = 3 orders are considered. The poststratified estimator is an example of

a B-spline estimator with order m = 1. The number of strata correspond to the number of

interior knots K plus one.
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The performance of an estimator θ̂ for a parameter θ is evaluated by computing the ratio of

root mean squared errors in percentage with respect to the HT estimator:

RRMSE = 100×

√√√√ I∑
i=1

(θ̂i − θ)2/

√√√√ I∑
i=1

(θ̂i,d − θ)2

for I = 3000 simulations. Results are reported in Table 2.1.

Not surprisingly, for complex parameters, the largest efficiency gain is observed when the B-

spline estimators are compared to the HT estimator without auxiliary information. Because

the wages from 2000 are almost linearly related to the wages from 1999, considering the B-

spline estimator instead of the GREG estimator does not improve the performance of the mean

estimation. However, regarding the Gini index, the incorporation of auxiliary information using

GREG estimators does not improve efficiency compared to the HT estimator while using a

B-spline approach improves the results especially for spline functions of order m = 2. When

comparing the POST estimator with the BS(2) and BS(3) estimators, we notice that there is

quite a large gain in efficiency when order m = 2 is used instead of m = 1, while there is an

efficiency loss when m = 3 is used instead of m = 2, especially for sample sizes smaller than

1,000. Moreover, for m = 2 and m = 3, the results do not depend heavily on the number of

knots and are similar for K between 2 and 4 while for the poststratified estimator, there are

large variations in the results, regardless of whether we consider 3 or 5 strata.

Goga and Ruiz-Gazen [2014a] have also evaluated the coverage probabilities. They obtain that

valid inference can be carried out using B-spline estimators as long as the spline order is not too

high, especially when the sample size is not very large. No problems are detected for B-splines

of order m = 1 and order m = 2 even when the sample size is n = 200; however for m = 3

and n = 200, the coverage probabilities for the Gini index estimation are approximately 75%

which is quite far from the 95% nominal probability. This result indicates that for a moderate

sample size, the variance may be underestimated when the order of the splines is larger than

two. The results are not given for m = 4 but we have observed that the problem worsens when

we increase the order of the splines. This is not really surprising due to double linearization

and nonparametric estimation.

Based on this example, Goga and Ruiz-Gazen [2014a] do not recommend using high order values

for B-spline regression, especially when the sample sizes are smaller than 500. However, choosing

m = 2 instead of m = 1 (which corresponds to poststratification) leads to a clear improvement in

terms of efficiency for complex parameters such as the Gini index or the low-income proportion,

and they recommend this choice.
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Table 2.1: RRMSE of GREG and POST, BS(2) and BS(3) for the mean and the Gini index

Parameter n GREG POST BS(2) BS(3)
K = 2 - K = 4 K = 2 - K = 4 K = 2 - K = 4

Mean 200 38 71 - 63 38 - 37 39 - 41
500 40 73 - 65 40 - 39 38 - 39

1,000 40 73 - 66 40 - 40 38 - 39

Gini index 200 96 92 - 80 53 - 53 70 - 70
500 93 93 - 85 50 - 50 59 - 56

1,000 92 93 - 86 49 - 48 55 - 51

2.3 Conclusion and perspectives

I have presented in this chapter the estimation with survey sampling designs of nonlinear param-

eters in a finite population framework. The main concern was about giving a unified presentation

by means of the functional approach which is a powerful method to linearization of such pa-

rameters as well as developing rigorous justifications of the asymptotic results. Throughout

the chapter, the theory has been illustrated on two nonlinear parameters: the Gini index and

the odds-ratio. However, applications of results exhibited here are numerous and Chapter 3.1 is

concerned, among others, with the estimation of elements of the functional principal component

analysis or the functional median.

A general class of substitution estimators that allows to take into account complete auxiliary

information is suggested. Through a nonparametric B-spline regression and a model-assisted

approach, a unique system of weights is constructed and it can be used to estimate efficiently

any nonlinear study parameter that is associated with any study variable of the survey. A

very important feature of nonparametric weights based on B-spline regression is their great

similarity with the parametric weights build under a linear model. Moreover, Goga and Ruiz-

Gazen [2014a] conclude that in order to estimate efficiently a larger class of parameters, it is

enough to consider slightly more complicated basis of functions than in the case of the linear

model. This can be achieved for a low order of B-spline basis (m = 2 or m = 3) and few

interior knots. The functions of the B-spline basis are easy to compute by using for instance the

transreg procedure in the SAS software (SAS Institute, 2010) or the splines package from the

R software (R Core Team, 2012). Finally, a new calibration approach is suggested and shown

to have many attractive properties.

Work presented in this chapter may be extended and continued following several directions. The

asymptotic behavior of the substitution estimators computed under complex sampling designs,

such as the two-stage sampling, is actually in progress (Chauvet and Goga [2013b]). This

work also considered a two-sample or temporal setting and the variance estimators obtained

by functional linearization are compared with those obtained by using bootstrap methods for

estimating the variance. The extension of bootstrap methods to the two-sample case presents

many difficulties and drawbacks with respect to the linearization.
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Concerning the nonparametrics framework, several directions for future works are possible. We

mention the extension of the nonparametric approach to multivariate auxiliary information as

well as the study of the computation of the penalty parameter λ. Another direction of research

would be to borrow the idea used in B-spline calibration in the context of balanced sampling.

For the moment, balanced sampling has been suggested to improve the estimation of the total.

It may be of interest to extend it to the estimation of an arbitrary nonlinear parameter Φ. A

research project on this topic is planned in collaboration with G. Chauvet and A. Ruiz-Gazen.



Chapter 3

Estimation with survey sampling

techniques in presence of large

datasets: functional and high

dimensional data

Nowadays, with the spread of automatic process for data collection as well as increasing storage

capacities, it is not unusual anymore to have to analyse large data sets. Audience curves or

electricity load curves are two exemples of such data. More exactly, the ERDF (Electricité et

Réseaux de France) plans to install more than 30 millions of smart meters in every household

and company. These meters will be able to send individual electricity consumption measures

at very fine time scales. The discretization scheme is very fine so that the statistical units can

be considered as functions of time. We can use the tools of functional data analysis to describe

the data and build statistical models. Even if some of these tools have been first proposed in

the 1970s in Deville [1974] and Dauxois and Pousse [1976], these methods only really begun to

spread twenty years ago with the increase of computer performances as well as storage capac-

ities. The reader may refer to Ramsay and Silverman [2005] and Ferraty and Vieu [2006] for

an overview of the different techniques developed in the statistical literature in functional data

analysis as well as examples of application.

Nevertheless, in the presence of technical and budgetary constraints due to limited bandpass or

storage costs of huge databases, the analysis of the whole dataset may be very difficult or even,

not possible. In Chiky [2009], it is shown that if we are only interested in simple indicators,

such as total or mean trajectories, even very simple survey sampling techniques, such as simple

random sampling without replacement, are attractive alternatives to signal compression tech-

niques since they permit to obtain precise estimates at a reasonable cost. Motivated by this new

setting, several papers combined recently functional data analysis and sampling theory. Cardot

and Josserand [2011] and Cardot et al. [2013b] considered the uniform convergence of the HT

46
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estimator of the mean curve. An important issue with this new type of datasets, is how to build

asymptotic confidence bands with desired coverage rates (Cardot and Josserand [2011]). Cardot

et al. [2013c] made a comparaison, in terms of precision of the estimators for the mean of elec-

tricity consumption, of different approaches that can take auxiliary information into account.

They also compare the width of the confidence bands. The conclusion of the empirical study

was that incorporating the auxiliary information in the sampling design or at the estimation

stage improves a lot the performance of estimators. In particular, the width of confidence bands

is greatly reduced. Theoretical justification of these results are established in Cardot et al.

[2013d] and Cardot et al. [2014b]. At the same time, Chaouch and Goga [2012] were interested

in the estimation of robust parameters, such as the median curve and they studied the impact

of different sampling designs and estimators on the estimation of this indicator.

Another aspect of large datasets is the possibility of having high-dimension sets of auxiliary

information. In such conditions, the performance of estimators based on the whole auxiliary

information may be damaged. During the 1990s, several authors suggested ridge-type estimators

in a model-based approach as well as in a calibration approach in order to overcome the problems

due to large datasets (Bardsley and Chambers [1984], Rao and Singh [1997]). However, these

suggestions have received relatively little attention until now, when the amount of auxiliary

information is becoming more and more large due to the increase of computer performances.

This chapter is structured as follows. Section 3.1 gives a presentation of results obtained for

functional variables. The content of this chapter is mainly based on the review article submitted

for a special issue for the “Journal de la SFdS” (Lardin-Puech et al. [2014]). After introducing

the notations and parameters of interest in Section 3.1.1, the HT estimators as well as the

substitution estimators are given in Sections 3.1.2-3.1.3. Consistency results are presented in

Sections 3.1.4-3.1.6 and the HT estimators are improved in Section 3.1.7-3.1.8. Throughout this

section, a test population of N = 18902 French companies for which the electricity consumption

has been measured every half an hour over a period of two weeks, is used to illustrate the

performance of the suggested estimators.

Section 3.2 treats the estimation of finite population totals by taking into account large datasets

of auxiliary information. After presenting the difficulties risen in such conditions, Sections 3.2.1

and 3.2.2 give a detailed review of the penalized calibration as done in Goga and Shehzad

[2014b]. A new class of penalized estimators based on principal components analysis is sug-

gested in Sections 3.2.3-3.2.5. Asymptotic properties are established and a small application is

conducted on electricity load curves.
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3.1 Survey sampling designs for functional data

3.1.1 Notations and parameters of interest

We suppose that for each unit k from the population U , we can observe a deterministic function

of time Yk = (Yk(t))t∈[0,T ]
1 that belongs to some space of functions. Depending on the objective,

this space will be either the space of continuous functions C[0, T ] endowed with the sup norm

or the Hilbert space L2[0, T ], i.e. the space of square integrable functions defined on the closed

interval [0, T ], equipped with the inner product < f, g >=
∫ T

0 f(t)g(t)dt and the induced norm

||f || = (
∫ T

0 f2(t)d(t))1/2 for f, g ∈ [0, T ].

For the illustration, consider a test population of N = 18902 French companies for which the

electricity consumption has been measured every half an hour over a period of two weeks. A

sample of 20 load curves extracted from the test dataset is drawn in Figure 3.1 as well as the

mean and the median profiles.

In this functional setting, the statistician may be interested in estimating classical parameters of

interest such as the total or the mean curve and their definition and interpretation are obtained

easily by analogy with the non-functional case. The situation is more complicated for other

parameters of interest, such as quantiles. The median may be defined in several manners for

multivariate or functional data. Moreover, new functional parameters may be of interest now.

When the aim is to build confidence bands the natural setting will be the space C[0, T ] since

we want to produce a confidence interval that is uniform in t. When the aim is to estimate the

principal components or the geometric median, strict convexity of the norm of the underlying

functional space as well as the existence of an inner product are required, so that the natural

setting is to consider that the Yk are elements of L2[0, T ].

We present below the functional parameters of interest that have been studied in a survey

sampling setting. The simplest ones are total curve, defined as follows:

tY =
∑
k∈U

Yk

and the mean trajectory µN :

µN =
1

N

∑
k∈U

Yk. (3.1)

The value of tY or µN in a measurement point t ∈ [0, T ] is obtained directly as tY (t) =∑
k∈U Yk(t) and µN (t) = 1

N

∑
k∈U Yk(t), respectively.

For such high dimensional data, other useful statistical indicators are given by the principal

components that can exhibit the main modes of variation of the data around the mean curve (see

1In this section, I use capital letter for the study variables since we deal with functions now.
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Figure 3.1: A sample of 20 electricity consumption curves measured every half an hour over a
period of one week. The mean consumption curve in the population is drawn in bold blue line

and the median curve in red one.

e.g Ramsay and Silverman [2005] and Cardot et al. [2010a]). To perform principal components

analysis, it is first required to estimate the covariance function of the data at the population

level. For r and t in [0, T ], the covariance function γ(r, t) between (Yk(r))k∈U and (Yk(t))k∈U is

defined as follows:

γ(r, t) =
1

N

∑
k∈U

(Yk(r)− µN (r))(Yk(t)− µN (t)), (r, t) ∈ [0, T ]× [0, T ].

Then, the associated covariance operator Γ which maps L2[0, T ] to L2[0, T ] is defined by,

Γa(r) =

∫ T
0
γ(r, t)a(t)dt, (3.2)
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for any function a ∈ L2[0, T ]. The covariance operator has the following equivalent form:

Γ =
1

N

∑
k∈U

(Yk − µN )⊗ (Yk − µN ), (3.3)

where the tensor product of two elements a and b of L2[0, T ] is the rank one operator such that

a ⊗ b(y) =< a, y > b for all y ∈ L2[0, T ]. The eigenvalues of Γ are non negative and supposed

to be sorted in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. They satisfy:

Γvj(t) = λjvj(t), j = 1, . . . , N (3.4)

where the eigenfunctions vj , j = 1, . . . , N can be chosen to form an orthogonal system in L2[0, T ],

namely < vj , vj′ >= 1 if j = j′ and zero otherwise.

With high dimensional data, it is not uncommon to have outlying curves, such as consumers

with very high levels of electricity consumption. In such a situation, it is advisable to consider

indicators which are more robust to outlying data than the mean profile and the median is one of

them. However, the notion of median can not be generalized easily to multivariate or functional

data because of the lack of a natural ordering. There are several definitions of the median and

we present here the one used by Kemperman [1987] and Gervini [2008] for functional data.

Small [1990] gives a review of different definitions of the median with multidimensional data.

With a finite population point of view, the median curve calculated from the elements Y1, . . . , YN

belonging to L2[0, T ] is defined by:

mN = argminy∈L2[0,T ]

N∑
k=1

‖Yk − y‖. (3.5)

For Y1, . . . , YN ∈ Rd, mN defined by the relation (3.5) arises as a natural generalization of

the well-known characterization of the univariate median which can also be defined as mN =

arg miny∈R
∑N

k=1 |Yk − y| (see Koenker and Bassett [1978]). The median defined by (3.5) has

been used for the first time at the beginning of the 20-th century. It was called the spatial median

by Brown [1983] because, from a geometric point of view, the median is the point that minimizes

the sum of distances to the points in the population. For example, Weber [1909] considered

the following problem: a company wants to find the optimal location of its warehouse in order

to serve the N customers with planar coordinates given by Y1, . . . , YN . It is also known as the

Fermat-Weber point and Figure 3.2 gives the geometrical representation of the median with

three bi-dimensional points. The median M is the point characterized by the fact that the three

angles centered at M are equal.

The name of L1-median was used by Small [1990] because the definition uses a L1-criterion.

Finally, Chaudhuri [1996] called it the geometric median because it may be seen as a particular

case of the geometric quantiles whose definition uses the geometry of the data clouds by means

of a direction and a magnitude.
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Figure 3.2: The median M of a uniform distribution with three atoms A,B and C in R2.

The median defined in (3.5) is global indicator of the centrality of the data, in the sense that it

takes into account all the measurement instants. Chaudhuri [1996] showed that it is equivariant

under orthogonal transformations and homogeneous scale transformations of the coordinates of

the multivariate data. It possesses several robustness properties such as the breakdown point

equal to 0.5 (Kemperman [1987], Lopuhaä and Rousseeuw [1987]), namely 50% of the data

must be moved to infinity to force the median to do the same. As noted by Serfling [2002], the

median defined by (3.5) and Y1, . . . , YN ∈ Rd, mN depends only on its direction towards Yk.

More exactly, mN remains unchanged if the Yk are moved outward along these rays; see also

Ilmonen et al. [2012] for a recent review of the properties of the L1-median.

If we assume that Yk, for all k = 1, . . . , N, are not concentrated on a line, the median exists

and is unique (see Kemperman [1987]). If mN 6= Yk for all k = 1, . . . , N, then it is the unique

solution of the following estimating equation:

N∑
k=1

Yk − y
||Yk − y||

= 0 (3.6)

The median defined by (3.5) or (3.6) may be computed by using fast iterative algorithms such

as Weiszfeld’s algorithm (see Weiszfeld [1937] and Vardi and Zhang [2000]) for multivariate data

or gradient algorithms (see Gervini [2008]) for sparse functional data. Note however that these

algorithms may be time-consuming, especially if both the population size and the number of

measurement instants are very large. To cope with this issue, Cardot et al. [2013a] suggest in

a recent work to use recursive algorithms that are very fast and allow to compute the median

when the data arrive sequentially. Alternatively, Chaouch and Goga [2012] suggest a weighted

estimator of the L1-median curve obtained by using only a sample drawn randomly from the

population.
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In a non-functional framework, Chaudhuri [1996] extends the definition given in (3.5) to geo-

metric quantiles by using the geometry of data clouds. Chaouch and Goga [2010] investigated

geometric quantiles with data collected from a complex survey and they suggested to use the

quantile contours to detect outliers in multivariate data.

In a functional framework, the Chaudhuri [1996]’s definition indexes the quantiles by the ele-

ments v ∈ L2[0, T ] with ||v|| ≤ 1,

Q(v) = argminy∈L2[0,T ]

N∑
k=1

(||Yk − y||+ < Yk − y, v >).

In this way, functional quantiles are characterized by a direction and magnitude specified by

v ∈ L2[0, T ] with ||v|| ≤ 1. Nevertheless, except the case v = 0, it is difficult to interpret the

functional quantile defined in this way.

Considering again the electricity data presented in the Introduction we have plotted in Figure 3.3

the mean population curve as well as the L1-median curve. As it can be seen, the median curve

presents the same periodic patterns as the mean curve but with lower values. The difference

comes from the fact that the distribution is very asymmetric, with a few curves with very large

consumption levels.

3.1.2 The HT estimator for linear functional parameters

Without any auxiliary information, Cardot et al. [2008] and Cardot et al. [2010a] proposed to

estimate the total curve tY by the (functional) HT estimator defined as follows2:

t̂Y =
∑
k∈s

dkYk =
∑
k∈U

dkYk (3.7)

where πk is not depending on t. The estimator t̂Y π belongs to L2[0, T ] and its value at instant

t, for t ∈ [0, T ], is simply

t̂Y (t) =
∑
k∈s

dkYk(t).

Let us remark that the curves Yk(t) are considered as fixed with respect to the sampling design

and it is the sample membership Ik that is random with respect to p(·). Using the fact that

Ep(Ik) = πk, where Ep[·] is the expectation with respect to the sampling design, we obtain easily

that t̂Y is design-unbiased for tY , namely Ep(t̂Y ) = tY .

An estimator of the mean curve µN is obtained by dividing by N the HT estimator t̂Y π, namely

µ̂ =
1

N
t̂Y . (3.8)

2In this section, the subscript d from the definition of HT estimators is dropped off.
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Figure 3.3: The L1-median profile (in red) and the mean profile (in black) of the electricity
consumption curves.

This estimator has been studied in Cardot et al. [2013c] and Cardot et al. [2013d].

The covariance between t̂Y (r) and t̂Y (t) computed with respect to the sampling design is derived

easily by using the fact that Covp(Ik, Il) = πkl − πkπl and it is given by a HT variance-type

formula:

γp(r, t) =
∑
k∈U

∑
l∈U

(πkl − πkπl)dkdlYk(r)Yl(t), r, t ∈ [0, T ] (3.9)

For r = t, we obtain the variance of t̂Y (r). The covariance function γp(r, t) is estimated unbias-

edly with respect to the sampling design by:

γ̂p(r, t) =
∑
k∈s

∑
l∈s

πkl − πkπl
πkl

dkdlYk(r)Yl(t), r, t ∈ [0, T ]. (3.10)
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Taking discretization effects into account

With real data, we generally do not observe Yk(t) at all instants t in [0, T ] but only for a finite

set of D measurement times, 0 = t1 < ... < tD = T . In functional data analysis, when the noise

level is low and the grid of discretization points is fine, it is usual to perform a linear interpolation

or to smooth the discretized trajectories in order to obtain approximations of the trajectories

at every instant t (cf. Ramsay and Silverman [2005]). When there are no measurement errors

and when the trajectories are regular enough, Cardot and Josserand [2011] showed, under weak

regularity conditions, that linear interpolation can provide sufficiently accurate approximations

of the trajectories to get efficient estimators of the mean trajectories. Thus, for each unit k in

the sample s, we build the interpolated trajectory

Y
(d)
k (t) = Yk(ti) +

Yk(ti+1)− Yk(ti)
ti+1 − ti

(t− ti), t ∈ [ti, ti+1], (3.11)

and estimators can be constructed based on the interpolated values. For example, the estimator

of tY based on the discretized observations is as follows:

t̂
(d)
Y (t) =

∑
k∈s

dkY
(d)
k (t), t ∈ [ti, ti+1]

and the mean trajectory by

µ̂(d) =
1

N
t̂
(d)
Y (t). (3.12)

The covariance between t̂
(d)
Y (t) and t̂

(d)
Y (r) is then estimated by

γ̂(d)(r, t) =
∑
k∈s

∑
l∈s

πkl − πkπl
πkl

dkdlY
(d)
k (r)Y

(d)
l (t), r, t ∈ [0, T ]. (3.13)

When the observations are corrupted by noise, Cardot et al. [2013b] proposed to replace the

interpolation step by a smoothing step based on local polynomials. The smoothness of the

mean estimator depends on a bandwidth whose value is selected by a cross-validation method

that accounts for the sampling weights. They have shown on simulations that smoothing does

really improve the accuracy of the HT estimator only when the noise level is high. On the

other hand, smoothing can lead, for low and moderate levels of noise, to estimators that are

outperformed by linear interpolation methods, specially when the value of the bandwidth is not

selected effectively, which is the case if cross-validation is used curve by curve. Undersmoothing

should be preferred.

3.1.3 Substitution estimators for non-linear parameters

The mean trajectory µN or the variance operator Γ are ratios of two finite population totals.

The eigenvalues and eigenfunctions of Γ as well as the median trajectory mN are also non-linear
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functions of population totals as they are defined by the implicit equations (3.4) and (3.6), re-

spectively.

To estimate these parameters, the strategy is simple and similar to the one used for real param-

eters and presented in Chapter 1. It consists in writing the parameter of interest as a functional

T of the discrete measure M defined now on the space L2[0, T ] as suggested by Cardot et al.

[2008] and Cardot et al. [2010a]:

M =
∑
k∈U

δYk ,

where δYk is the Dirac measure in Yk with k ∈ U . All the non-linear parameters studied here

can be written as functionals of M :

µN =

∫
Y dM∫
dM

, (3.14)

Γ =

∫
(Y − µN )⊗ (Y − µN )dM∫

dM
. (3.15)

The eigenvalues and eigenfunctions of Γ are also functionals of M as they are defined by the

implicit equation (3.4). As for the median curve, consider the functional equal to the (Fréchet)

derivative with respect to y of the objective function defined in (3.5):

TmN (M ; y) = −
∫

Y − y
||Y − y||

dM. (3.16)

Then, the median is the unique solution of the implicit equation TmN (M ;mN ) = 0.

The measure M can be estimated by : 3

M̂ =
∑
k∈s

dkδYk ,

and the estimators of µ,Γ and of mN respectively, are obtained by replacing M with M̂ in their

definition. These estimators are also called substitution estimators. More exactly, the mean

trajectory µN is estimated by the Hájek-type estimator (see Cardot et al. [2010a]):

µ̂Haj =
t̂Y

N̂
, (3.17)

where N̂ =
∑

s 1/πk is the HT estimator of N and the variance operator Γ is estimated by

Γ̂ =
1

N̂

∑
k∈s

(Yk − µ̂Haj)⊗ (Yk − µ̂Haj)
πk

=
1

N̂

∑
k∈s

Yk ⊗ Yk
πk

− µ̂Haj ⊗ µ̂Haj .

The estimators λ̂j , v̂j of λj , vj are the eigenvalues and eigenfunctions of Γ̂, namely

Γ̂v̂j(t) = λ̂j v̂j(t), t ∈ [0, T ]. (3.18)

3The subscript d used in the notation of the HT estimators is dropped off in this section.
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Considering now the median curve and assuming that all the Yk, for k ∈ s are not concentrated

on a line, we obtain with (3.16), that mN is estimated by m̂, the unique solution of

∑
k∈s

dk
Yk − m̂
‖Yk − m̂‖

= 0, (3.19)

provided that m̂ 6= Yk for all k ∈ s (see Chaouch and Goga [2012]).

3.1.4 Uniform consistency of the total or the mean curve estimators

For each fixed value of t ∈ [0, T ], the estimator t̂
(d)
Y (t) is simply the estimator of a total of a

real variable, so that under classical hypotheses on the sampling design and on the moments of

Yk(t) for k ∈ U, it can be shown that it is consistent (see e.g. Chapter 1), namely

for all ε > 0, lim
N→∞

P
(

1

N
|t̂(d)
Y (t)− tY (t)| > ε

)
= 0,

as well as asymptotically Gaussian,

√
n

N
(t̂

(d)
Y (t)− tY (t))→ N (0, γ̃p(t))

where γ̃p(t) = lim
N→∞

n

N2
γp(t, t). Since µ̂(d) = t̂

(d)
Y /N, for ease of notation, we use µ̂(d) in the

formulation of the following results.

In a functional setting, the interest is to get the uniform consistency of µ̂(d) as defined in the

following definition.

Definition 3.1. An estimator θ̂ is uniformly consistent for θ if

for all ε > 0, lim
N→∞

P

(
sup
t∈[0,T ]

|θ̂(t)− θ(t)| > ε

)
= 0.

The suitable space for proving the uniform consistency is the space of continuous functions on

[0, T ] denoted by C[0, T ] and equipped with its usual uniform distance:

ρ(f, g) = sup
t∈[0,T ]

|f(t)− g(t)| for f, g ∈ C[0, T ].

We remark that the uniform consistency of µ̂(d) is in fact the convergence in probability (ac-

cording to ρ) of µ̂(d) in C[0, T ]. One way to obtain the uniform consistency of an arbitrary

estimator θ̂ is to show that Ep(supt∈[0,T ] |θ̂(t) − θ(t)|) is going to zero and next, to use the

Markov inequality:

P

(
sup
t∈[0,T ]

|θ̂(t)− θ(t)| > ε

)
≤

Ep(supt∈[0,T ] |θ̂(t)− θ(t)|)
ε

.
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In order to prove the uniform consistency, we need supplementary assumptions.

Assumptions on the regularity of trajectories

Assumption V4. There are two positive constants C2 and C3 and 1 ≥ β > 1/2 such that,

for all N and for all (r, t) ∈ [0, T ]× [0, T ],

1

N

∑
k∈U

Yk(0)2 < C2 and
1

N

∑
k∈U
{Yk(t)− Yk(r)}2 < C3|t− r|2β.

Assumption (V4) deal with the regularity of the trajectories and was already required in Cardot

and Josserand [2011]. It can be remarked that the first part of assumption (V4) is similar to

assumption (V1) from the non-functional case. In a functional setting, Hölder conditions are

required to control the oscillations of the processus. Even if pointwise consistency, for each

fixed value of t, can be proved without any condition on the Hölder coefficient β, this regularity

condition is necessary to get a uniform convergence result. A counterexample is given in Hahn

[1977] when β ≤ 1/2. More precisely it is shown that the sample mean i.i.d copies of a uniformly

bounded continuous random function defined on a compact interval may not satisfy the Central

Limit Theorem in the space of continuous functions. The hypothesis β > 1/2 also implies that

the trajectories of the residual processes εkt, see (3.35), are regular enough (but not necessarily

differentiable).

If assumptions (S1), (S2) and (V4) hold and if the discretization scheme satisfies

max
i={1,..,DN−1}

|ti+1 − ti|2β = o(n−1), (3.20)

then, it is proven in Cardot and Josserand [2011] that the estimator of the mean curve µ̂d

satisfies:

Ep

{
sup
t∈[0,T ]

|µ̂(d)(t)− µN (t)|

}
= O(n−1/2),

namely, it is asymptotically design-unbiased and uniformly consistent. Note that condition

(3.20) ensures that the interpolation error is negligible compared to the sampling error. The

proof uses maximal inequalities that can be found in van der Vaart and Wellner [2000] (see the

proof of proposition 3.8).

In order to prove the uniform consistency of the variance function estimator, the assumption

(S4) on the fourth-order inclusion probabilities and the following additional assumptions on the

regularity of the trajectories are needed:

Assumption V5. There are two positive constants C4 and C5 and 1 ≥ β > 1/2 such that,

for all N and for all (r, t) ∈ [0, T ]× [0, T ],
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1

N

∑
k∈U

Yk(0)4 < C4 and
1

N

∑
k∈U
{Yk(t)− Yk(r)}4 < C5|t− r|4β.

Cardot and Josserand [2011] have shown that the variance function estimator γ̂(d) given by

(3.13) is uniformly consistent:

Ep

(
sup
t∈[0,T ]

1

N2
|γ̂(d)(t, t)− γp(t, t)|

)
= o(n−1).

3.1.5 Asymptotic normality and confidence bands for the mean curve

For fixed t ∈ [0, T ], establishing the asymptotic normality of the pointwise estimator
√
n(µ̂(d)(t)−

µN (t)) falls down in the theory described in Section 1.4. Then, it is possible to construct asymp-

totic pointwise confidence intervals for µN (t) :

lim
N→∞

P
(
µN (t) ∈

[
µ̂(d)(t)± qα

σ̂(t)√
n

])
= 1− α,

where α ∈ (0, 1) and qα is the quantile of order 1 − α/2 of the standard normal distribution

N (0, 1).

The interest is to go further and to obtain the asymptotic distribution of
√
n(µ̂(d) − µN ) as an

element of C[0, T ] in order to be able to build asymptotic confidence bands. Recall first the

definition of the convergence in distribution in C[0, T ] :

Definition 3.2. Let (Xn)n, X be random functions with values in (C[0, T ], ρ). Then (Xn)n

converges in distribution to X in C[0, T ] :

Xn →D X in C[0, T ],

if for each f : C[0, T ]→ R continuous and bounded, we have:

E(f(Xn))→ E(f(X)).

The terminology weak convergence is also employed (van der Vaart [1998], Billingsley [1968]).

The following notion of tightness, by which it is disallowed any escape of mass, proves important

both in the theory of convergence in distribution and in its applications.

Definition 3.3. A random function X from C[0, T ] is called tight if for every ε > 0, there is a

compact set K ⊂ C[0, T ] such that P (X ∈ K) > 1− ε.

A sequence (Xn)n of real variables is tight if (Xn)n is bounded in probability, namely Xn =

Op(1). For more general spaces, such as C[0, T ], this property is more difficult to obtain since
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it involves the characterization of compact sets in such spaces. Billingsley [1968] (theorem 8.2)

uses the Arzelà-Ascoli’s theorem to give a characterization of compactness in C[0, T ]. Other

criteria for tightness (consequences of theorem 8.2) are given in Billingsley [1968]; in particular,

theorem 12.3 gives a useful and simple criterion:

Theorem 3.4. (Billingsley [1968]) The sequence (Xn)n is tight in C[0, T ] if it satisfies these

two conditions:

1. (Xn(0))n is tight and

2. There exist two constants γ ≥ 0 and α > 1 and a nondecreasing, continuous function F

on [0, T ] such that

E|Xn(t)−Xn(r)|γ ≤ |F (t)− F (r)|α, for all t, r ∈ [0, T ].

As Billingsley [1968] states, the second condition from the above theorem stipulates “that the

random functions Xn do not oscillate too violently”.

Now, since the space C[0, T ] is separable and complete, the convergence in distribution C[0, T ]

is equivalent to tightness and finite-dimensional convergence in distribution as obtained by

Prohorov (see Billingsley [1968]):

Theorem 3.5. A sequence of random functions (Xn)n from C[0, T ] converges in distribution

to a random function X, Xn →D X, if and only if:

1. any finite-dimensional vector (Xn(t1), . . . , Xn(tr))n converge in distribution to (X(t1), . . . , X(tr))

2. (Xn)n is tight.

In our setting, the sequence of random functions is given by Xn =
√
n(µ̂(d)−µN ). By assumption

(V4), the trajectories Yk are continuous as well as Y
(d)
k by construction, implying thatXn belongs

to C[0, T ]. By assuming the pointwise asymptotic normality of µ̂ and N−1
∑

k∈U Y
2+δ
k (t) <∞

for all t ∈ [0, T ] and some δ > 0, Cardot and Josserand [2011] showed that Xn =
√
n(µ̂ − µN )

satisfies conditions 1 and 2 from theorem 3.5. It follows that

√
n(µ̂− µN )→D Z in C[0, T ]

where Z is a Gaussian random function taking values in C[0, T ] with mean 0 and covariance

function γ̃p(r, t) = lim
N→∞

n

N2
γp(r, t). Next, if the discretization points are numerous enough (see

condition (3.20)), it can be shown that
√
n(µ̂(d)− µN ) =

√
n(µ̂− µN ) + o(1) uniformly in t and

as a consequence, √
n(µ̂(d) − µN )→D Z in C[0, T ].

In a functional setting, we aim at building simultaneous confidence bands for µN of the form

P
(
µN (t) ∈

[
µ̂(d)(t)± cα

σ̂(t)√
n

]
, ∀t ∈ [0, T ]

)
= 1− α, (3.21)
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where the coefficient cα is unknown and depends on the desired level of confidence 1 − α, and

σ̂(t) =

√
n

N2
γ̂(d)(t, t).

The calculation of cα is based on the asymptotic distribution of µ̂(d) in C[0, T ]. Thus, for n

large enough, we have that

P
(
µN (t) ∈

[
µ̂(d)(t)± cα σ̂(t)

]
, ∀t ∈ [0, T ]

)
' P

(
sup
t∈[0,T ]

|Ẑ(t)|
σ̂(t)

≤ cα

)

' P

(
sup
t∈[0,T ]

|Z(t)|
σ(t)

≤ cα

)

where Ẑ is a zero mean Gaussian random function with covariance
n

N2
γ̂(d). The cut-off point

cα is the quantile of order 1 − α of supt∈[0,T ] |Ẑ(t)|/σ̂(t) which can not be computed exactly

since the distribution of the supremum of Gaussian processes is known only for few particular

cases.

In a recent work, Cardot et al. [2013c] compared two methods for estimating the unknown

cut-off point cα. The first method relies on simulation of Gaussian processes and has been used

in Degras [2011] in a non-sampling setting. This Monte Carlo method consists in simulating a

Gaussian process Ẑ with zero mean and covariance function equal to γ̂(d) in order to determine

the distribution of its supremum and then estimate cα. A rigorous mathematical justification

of this technique has been given in Cardot et al. [2013b], Cardot et al. [2013d] and Cardot et al.

[2014b].

The second method avoids the estimation of the variance of the mean estimator by using boot-

strap techniques adapted to the functional case. The variance function γp(r, t) and the value

cα are estimated from the bootstrap replications. Cardot et al. [2013c] used the bootstrap sug-

gested by Gross [1980] for simple random sampling and its extensions to other sampling designs

suggested by Chauvet [2007].

Using a slightly different population of load curves, Cardot et al. [2013c] compared these two

methods for computing cα. They conclude that the two methods give similar coverage rates which

are very close to the desired nominal rates. Nevertheless, the bootstrap method is excessively

time-consuming.

3.1.6 Some consistency results for the non-linear parameter estimators

The convergence has essentially been proven in the Hilbert space L2[0, T ] by extending the

functional approach of Deville [1999b] to this space (Cardot et al. [2010a], Chaouch and Goga

[2012]). The functionals defined above (equations 3.14, 3.15 and 3.16) are all 0-homogeneous

(see assumption F1). The eigenvalues λj and eigenvectors vj as well as the median curve may
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be obtained as solutions of population estimating equations as described in Section 2.2.

Since all functionals considered in this section are 0-homogeneous and using theorem 2.8, a

first-order von Mises expansion of the functional T may be given as follows:

T (M̂) = T (M) +
∑
k∈s

uk
πk
−
∑
k∈U

uk + RemT

(
M

N
,
M

N

)
, (3.22)

where RemT is the reminder associated to the functional T and uk is the linearized variable of

T. Under the assumptions of theorem 2.8, the reminder is of order RemT = op(n
−1/2). As the

eigenvalues λ̂j and eigenvectors v̂j are defined as solutions of the implicit estimating equation

3.18, the implicit function theorem may be used to obtain the result. This method was used

by Chaouch and Goga [2012] for the median curve. Cardot et al. [2010a] used the perturbation

theory to obtain that, if assumptions (S1), (S2) are fulfilled and if supk∈U ||Yk|| <∞, RemΓ =

op(n
−1/2) and

Ep||Γ̂− Γ||2HS = O(n−1),

where || · ||HS is the Hilbert-Schmidt 4 norm for operators. If all the nonnull eigenvalues λj , j =

1, . . . , N are distinct, then Remλj and Remvj are also of order op(n
−1/2) and

Ep(sup
j
|λ̂j − λj |)2 = O(n−1) (3.23)

and for each fixed j,

Ep||v̂j − vj ||2 = O(n−1). (3.24)

Remark that the above results are still valid if the strong assumption that supk∈U ||Yk|| <∞ is

replaced by moment conditions on Y (see for example, the assumption (V4)).

Consider now the linearized variables uk for the different parameters of interest considered in

this section. If supk∈U ||Yk|| < ∞, Cardot et al. [2010a] prove that the influence function of Γ

exists and that the linearized variable is given by:

uk,Γ =
1

N
((Yk − µ)⊗ (Yk − µ)− Γ), k ∈ U.

If moreover, the nonnull eigenvalues of Γ are distinct, then the linearized variables of λj and vj

are:

uk,λj =
1

N
(< Yk − µ, vj >2 −λj), j = 1, . . . N

4 It is induced by the inner product between two operators Γ and ∆ defined by < Γ,∆ >=
∑∞

j=1 < Γej ,∆ej >

for any orthonormal basis (ej)j≤1 of L2[0, T ].
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uk,vj =
1

N

∑
l 6=j

< Yk − µN , vj >< Yl − µN , vl >
λj − λl

vl

 , j = 1, . . . N

for all k ∈ U. Finally, if N−1
∑

k∈U ‖Yk −mN‖−1 < ∞ and mN 6= Yk for all k ∈ U, then the

linearized variable of the median curve is given by (see Chaouch and Goga [2012]):

uk,mN
= ∆−1

(
Yk −mN

‖Yk −mN‖

)
, k ∈ U (3.25)

where ∆ =
∑
k∈U

1

||Yk −mN ||

[
I− (Yk −mN )⊗ (Yk −mN )

||Yk −mN ||2

]
is the Jacobian operator of the func-

tional TmN in equation (3.16) and where I is the identity operator defined by Iy = y.

One can remark that the linearized variables uk are not even known for the sampled individuals,

so we need to estimate them. Moreover, except for the case of the eigenvalues λj , uk is a curve

depending on t ∈ [0, T ].

The expansion given in (3.22) is important since it allows the approximation of the substitution

estimator T (M̂) by the HT estimator
∑

k∈U uk, provided that the reminder term is negligible, i.e.

RemT = op(n
−1/2). Therefore, the asymptotic variance function of the substitution estimator

T (M̂) is the HT variance:

AVp(T (M̂))(t) =
∑
k∈U

∑
l∈U

(πkl − πkπl)
uk(t)

πk

ul(t)

πl

and it can be estimated by

V̂p(T (M̂))(t) =
∑
k∈s

∑
l∈s

πkl − πkπl
πkl

ûk(t)

πk

ûl(t)

πl
,

where ûk(t) is the estimator of uk(t). In order to prove that the variance function estimator is

consistent in the sense that

n{V̂p(T (M̂))(t)−AVp(T (M̂))(t)} = op(1),

an additional assumption on the fourth inclusion probabilities (assumption (S4)) is needed.

We also suppose that the linearized variable estimator ûk is uniformly bounded and uniformly

consistent for the true uk. In the case of functional principal component analysis, we have that

||ûk,µN || = O(n−1), ûk,λj = O(n−1), ||ûk,vj || = Op(n
−1) and

Ep||ûk,µN − uk,µN ||
2 = O(N−3),

Ep(ûk,λj − uk,λj )
2 = O(N−3),

||ûk,vj − uk,vj ||
2 = O(N−3),
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uniformly in k (see Cardot et al. [2010a]). To prove the consistency of V̂p(v̂j), the covariance

operator Γ is supposed to be of finite rank not depending on N. It is worth mentioning that the

estimators of the linearized variables satisfy the general assumptions given in Goga et al. [2009]

and given in theorem (2.9).

In the case of the median curve, the behavior of the variance estimator function was studied by

Chaouch and Goga [2012] by means of simulations only.

3.1.7 Using auxiliary information at the sampling stage: stratified and πps

sampling designs

If auxiliary information is used at the sampling stage, some changes are needed because the

variables involved now are curves, otherwise the selection of the sample is realized from the

sampling frame list as for classical multivariate surveys. For example, a simple random sampling

without replacement (SRSWOR) consists of taking n elements from the list of N elements of

the population and of recording the curve Yk for each sampled individual k. The HT estimator

of the mean curve µN is µ̂ = 1
n

∑
k∈s Yk with the covariance function given by:

γSRSWOR(r, t) =

(
1

n
− 1

N

)
SY (r)Y (t),U

where SY (r)Y (t),U = 1
N−1

∑
U (Yk(r)−µN (r))(Yk(t)−µN (t)) is the population covariance function

between Yk(r) and Yk(t). The estimator of the median is obtained from equation (3.19) for

πk = n/N for all k ∈ U.

Stratified sampling with simple random sampling within strata (STRAT)

Suppose that the population is divided into H strata U1, ..., UH of sizes N1, ..., NH and a sample

sh of size nh is drawn by a simple random sampling without replacement within the stratum

Uh, h = 1, ...,H.

The mean curve estimator with stratified sampling is given by:

µ̂strat(t) =

H∑
h=1

Nh

N

 1

nh

∑
k∈sh

Yk(t)

 , t ∈ [0, T ], (3.26)

with the covariance function given by:

γstrat(r, t) =
1

N2

H∑
h=1

N2
h

(
1

nh
− 1

Nh

)
SY (r)Y (t),Uh

r, t ∈ [0, T ], (3.27)

where SY (r)Y (t),Uh
is the population covariance function between (Yk(r))k∈U and (Yk(t))k∈U

within each stratum Uh.
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Stratified sampling can be also used to estimate any non-linear parameter of interest such as

the eigenvalues λj and the eigenfunctions vj for j = 1, . . . , N (see Cardot et al. [2010a]), or the

median curve (see Chaouch and Goga [2012]). For example, to obtain the estimator m̂strat of

the median curve with a stratified sampling, one can use the sampling weights πk = nh/Nh for

all k ∈ Uh, h = 1, . . . H in equation (3.19) and solve the following estimation equation:

H∑
h=1

Nh

nh

∑
k∈sh

Yk − m̂strat

‖Yk − m̂strat‖
= 0. (3.28)

The asymptotic variance function of m̂strat is

AVstrat(m̂strat)(t) =
H∑
h=1

N2
h

(
1

nh
− 1

Nh

)
S2
umN

(t),Uh
, (3.29)

where S2
umN

(t),Uh
is the population variance function of umN (t) = (uk,mN

(t))k∈Uh
within stratum

h and uk,mN
is the linearized variable of the median curve given in equation (3.25). That is, the

lower the variation of the linearized variable within stratum, the lower the asymptotic variance

of m̂strat. In the latter situation, stratified sampling is efficient for estimating the median curve

but may be poor for the estimation of other parameters. In such a situation, poststratification

may be used (see Chaouch and Goga [2012]).

To choose the size nh of the sample sh, it is possible to use the proportional allocation nh =

nNh/N , h = 1, ...,H or the optimal allocation as suggested by Cardot and Josserand [2011]:

nh = n
Nh

√∫ T
0 S2

Y (r)Y (r),Uh
dr∑H

h=1Nh

√∫ T
0 S2

Y (r)Y (r),Uh
dr
, h = 1, . . . ,H. (3.30)

This allocation minimizes the mean variance of the stratified estimator:

min
(n1,...,nH)

∫ T
0
γstrat(t, t)dt subject to

H∑
h=1

nh = n with nh > 0, for h = 1, . . . ,H.

This allocation is similar to that of the multivariate case when considering a total variance

criterion (Cochran [1977]) and has the same interpretation, namely strata with higher variability

should be sampled with a higher sampling rate than the other strata. In practice, S2
Y (r)Y (r),Uh

are unknown for all h = 1, ...,H. An auxiliary variable X known for all individuals k ∈ U and

highly correlated with the interest variable can be used instead and the so-obtained allocation

is called the x-optimal allocation.

Using the allocation given by (3.30) may not be optimal for estimating non-linear parameters

of interest. In order to derive the optimal allocation for estimating the median, for example,

one should minimize the asymptotic variance of m̂strat(t). The so obtained allocation depends

in this case on the linearized variable (see Chaouch and Goga [2012]).
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Probability proportional-to-size sampling: πps sampling

Unequal probability designs are used in practice because they are usually more efficient than the

equal probability designs. To estimate the mean curve, Cardot et al. [2013c] and Cardot et al.

[2014b] consider the fixed-size without replacement designs and to estimate the median curve,

Chaouch and Goga [2012] consider with replacement probability proportional-to-size designs.

We give below a description of results obtained in the first case.

For a sampling design of fixed size n, it is possible to give the equivalent of the Yates and

Grundy (Yates and Grundy [1953]) and Sen formula (Sen [1953]) in the functional case. The

covariance γp(r, t) of t̂Y π between two instants r and t, verifies

γp(r, t) = −1

2

∑
k∈U

∑
l∈U,l 6=k

(πkl − πkπl) (dkYk(r)− dlYl(r)) (dkYk(t)− dlYl(t)) . (3.31)

Using equation (3.31), we clearly see that the covariance γp(r, t) will be small if the first-order

inclusion probabilities πk are approximately proportional to Yk(t), for all instants t ∈ [0, T ].

Again, non-linear parameters may be estimated by using πps sampling designs. For example,

the HT estimator for the median with πps design is obtained by using in (3.19) the πk given by

equation (1.6). Nevertheless, this design performs very poorly for the estimation of the median

curve as can be seen in the application study presented in Section 3.1.9. This can be explained

by the fact that the relationship between the linearized variable uk,mN
and πk is not linear as it

can be remarked from (3.25) while Yk is approximately proportional to πk, which explains the

the good performance of the πps sampling for estimating the mean curve. In order to improve

the estimation of the median with a πps design, Goga [2014] suggests an estimator of mN which

consists in modifying the sampling weights 1/πk by using a superpopulation model explaining

the relationship between the uk and πk as follows:

uk,mN
(t) = g(πk, t) + ηkt, k ∈ U

where g is unknown and the errors ηkt are centered. The function g can be estimated by using

the B-spline regression as proposed by Goga and Ruiz-Gazen [2014a]. This leads to consider

the following smoothed weights:

wnp
ks =

1

πk

(∑
l∈U

bT (πl)

)(∑
l∈s

b(πl)b
T (πl)

πl

)−1

b(πk), k ∈ s

where b = (B1, . . . , Bq)
T is the vector of the B-spline basis of degree m and with K interior

knots, q = K +m. The improved estimator of the median is obtained from (3.19) by replacing

1/πk with the weights wks. In a model-based setting, Zheng and Little [2003] and Zheng and

Little [2005] used a similar idea and penalized spline in order to estimate finite population totals

with πps sampling designs. Work is actually in progress in order to obtain the asymptotic

properties of this improved estimator of mN .
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Variance estimation and confidence bands with πps sampling

The covariance function γp given by (3.31) involves the second-order inclusion probabilities πkl

which are very difficult or even impossible to calculate for many πps designs. Recently, a func-

tional Hájek approximation for the covariance function γp was suggested in Cardot et al. [2013c].

More exactly, suppose that the second-order inclusion probabilities satisfy the assumption (S3),

namely:

πkl = πkπl

{
1− (1− πk)(1− πl)

D(π)
[1 + o(1)]

}
where D(π) =

∑
k∈U πk(1 − πk) is supposed to tend to infinity when the population size N is

growing to infinity. Then, we can approximate γp by the following covariance function γH which

contains only the first-order inclusion probabilities:

γH(r, t) =
∑
k∈U

πk(1− πk)
(
Yk(t)

πk
−R(t)

)(
Yk(r)

πk
−R(r)

)

=
∑
k∈U

1− πk
πk

Yk(t)Yk(r)−
1

D(π)

(∑
k∈U

(1− πk)Yk(t)

)(∑
l∈U

(1− πl)Yl(r)

)
, r, t ∈ [0, T ],

(3.32)

where R(t) =

∑
k∈U Yk(t)(1− πk)

D(π)
. This approximation appears to be very efficient when the

sample size is large enough and the entropy of the sampling design is closed to the maximum

entropy, in particular for the rejective sampling and the Sampford-Durbin sampling (see Cardot

et al. [2014b]).

Using a slightly different population of load curves, the following estimator of the covariance

function has been successfully used by Cardot et al. [2013c] to build confidence bands for the

mean curve estimator:

γ̂
∗(d)
H (r, t) =

∑
k∈s

(1− πk)

(
Y

(d)
k (t)

πk
− R̂(t)

)(
Y

(d)
k (r)

πk
− R̂(r)

)

=
∑
k∈s

1− πk
π2
k

Y
(d)
k (t)Y

(d)
k (r)− 1

D̂(π)

(∑
k∈s

1− πk
πk

Y
(d)
k (t)

)(∑
l∈s

1− πl
πl

Y
(d)
l (r)

)
, r, t ∈ [0, T ],

(3.33)

where R̂(t) =
∑
k∈s

Y
(d)
k (t)(1− πk)

πk
/D̂(π) and D̂(π) =

∑
k∈s(1 − πk). The simulation study has

shown that the confidence bands had the desired coverage rates and their widths were greatly

reduced compared to the ones obtained with simple random sampling without replacement.

The estimator (3.33) is the functional version of the variance estimator suggested by Deville

and Tillé [2005].
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Note that it is also possible to consider the following covariance estimator:

γ̂
(d)
H =

D̂(π)

D(π)
γ̂
∗(d)
H , (3.34)

which is a slightly modified functional analogue of the variance estimator proposed by Berger

[1998a] in the real case. Assuming assumptions (S1) and (S2), it can be easily proven that

lim
N→∞

D̂(π)

D(π)
= 1. This results implies that the covariance estimators γ̂

∗(d)
H and γ̂

(d)
H have the

same asymptotic behavior. However, it is a bit easier to prove the consistency of γ̂H,d.

Proposition 3.6. (Cardot et al. [2014b]) Under assumptions (S1), (S3), (S4) and (V4), (V5)

and if the discretization scheme satisfies

lim
N→∞

max
i∈{1,...,DN−1}

|ti+1 − ti| = 0,

then for all r, t ∈ [0, T ],

lim
N→∞

nEp(|γ̂(d)
H (r, t)− γp(r, t)|) = 0,

and

lim
N→∞

nEp

(
sup
t∈[0,T ]

1

N2
|γ̂(d)
H (t, t)− γp(t, t)|

)
= 0.

The proof follows the same steps as in Cardot et al. [2013d]. It is shown first by using the

same arguments as in Breidt and Opsomer [2000], that for all t, r ∈ [0, T ], the estimator of the

covariance function γ̂
(d)
H (r, t) is pointwise convergent for γp(r, t). In order to obtain the uniform

consistency of the variance function estimator γ̂
(d)
H , it is shown that

n

N2
(γ̂

(d)
H − γp)→D 0 in C([0, T ]).

Then, from the definition 3.2 of the convergence in distribution in C([0, T ]) and the boundedness

and continuity of the sup functional, we obtain directly

Ep

(
sup
t∈[0,T ]

n

N2
|γ̂(d)
H (t, t)− γp(t, t)|

)
→ 0.

In particular, they note that the errors due to the Hájek approximation is negligible. Further,

as in Cardot et al. [2013d], in order to obtain the convergence in distribution of n(γ̂
(d)
H (t, t) −

γp(t, t))/N
2, theorem 3.5 is used: the convergence of all finite linear combinations is shown

first, which is easily obtained from the pointwise convergence, and next, it is checked that the

sequence n(γ̂
(d)
H (t, t)− γp(t, t))/N2 is tight by checking the two conditions given in theorem 3.4.

Remark 7. It is worth mentioning that the properties of boundedness and continuity of the

sup functional in the space C[0, T ] are crucial for obtaining the asymptotic distribution. These

properties are not true anymore in L2[0, T ].
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By using the approximations of the multiple inclusion probabilities given by Boistard et al.

[2012], a sharper result can be obtained for the rejective sampling:

Proposition 3.7. (Cardot et al. [2014b]) Under assumptions (S1), (S3) and (V4), (V5) and

if the discretization schema satisfies

max
i∈{1,...,DN−1}

|ti+1 − ti|2β = O(n−1),

then for all r, t ∈ [0, T ],

Ep
(

1

N2
(γ̂

(d)
H (r, t)− γp(r, t))

)2

= O(n−3).

The accuracy of the proposed variance estimators has been evaluated by Cardot et al. [2014b]

on the population of load curves considered before. They notice that even if this estimator

generally provides good estimations of the true covariance function, for a few ”bad” samples,

its performances could be very poor. These bad performances, which fortunately occur in very

rare occasions, are in fact due to a few individuals in the population that have both a very

small inclusion probability πk and a high consumption level Yk. Further work is needed in

order to build modified variance estimators that are more robust to the presence of influential

individuals. More work is also needed to evaluate the performances of this variance estimator

in the case of non-linear parameters.

3.1.8 Functional model-assisted estimator

In a recent work, Cardot et al. [2013d] suggested to improve the accuracy of the HT estimator µ̂

of the mean curve µN (t) by a model-assisted estimator based on a functional linear model (see

Faraway [1997]). This estimator can be seen as a direct extension, to the functional context,

of the generalized regression estimator or GREG estimator studied in Robinson and Särndal

[1983] and Särndal et al. [1992]. Its main advantage is that it only requires the knowledge of

the total of the auxiliary variable at the population level.

As before, let X1, ...,Xp be p real auxiliary variables and let also xk = (xk1, ..., xkp)
T be the value

of the vector of auxiliary variables for the k-th individual from the population. The following

superpopulation model ξt, also called functional linear model (see Faraway [1997]) is introduced:

ξt : Yk(t) = xTk β(t) + εkt, t ∈ [0, T ] (3.35)

where β(t) = (β1(t), . . . , βp(t))
T is the vector of functional regression coefficients, εkt are in-

dependent (across units) and centered continuous time processes, Eξ(εkt) = 0, with covariance

function Covξ(εkt, εkr) = Γ̃(t, r), for (t, r) ∈ [0, T ]× [0, T ].
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The functional model-assisted or GREG estimator is given by (see Cardot et al. [2013d]):

µ̂MA(t) =
1

N

∑
k∈s

dkYk(t)−
1

N

(∑
k∈s

dkxk −
∑
k∈U

xk

)T
β̂x(t), t ∈ [0, T ], (3.36)

where β̂x(t) = Ĝ−1 1
N

∑
k∈s dkxkYk(t) with Ĝ = 1

N

∑
k∈s dkxkx

T
k .

Remark 8. We can note that the estimator µ̂MA may be written as a weighted sum of Yk, for

k ∈ s with weights not depending on the index t.

When the matrix Ĝ is not well conditioned, Cardot et al. [2013d] proposed to replace Ĝ with

the following regularized estimator:

Ĝa =

p∑
j=1

max(λj,n, a) vjnv
T
jn

where a > 0, λj,n is the j th eigenvalue, λ1,n ≥ . . . ≥ λp,n ≥ 0, and vjn is the corresponding

orthonormal eigenvector of the matrix Ĝ. A similar idea was used by Bosq [2000] and Guillas

[2001].

It is clear that Ĝa is always invertible and

‖Ĝ−1
a ‖2 ≤ a−1, (3.37)

where ‖.‖2 is the spectral norm for matrices. Furthermore, if λp,n ≥ a then Ĝ = Ĝa. If a > 0

is small enough, Cardot et al. [2013d] show under standard conditions on the moments of the

variables X1, . . . ,Xp (assumptions (A1), (A2) from below) and on the first and second order

inclusion probabilities (assumptions (S1), (S2)) that

P(Ĝ 6= Ĝa) = P(λp,n < a) = O(n−1)

(see Lemma A.1. from Cardot et al. [2013d]). In the following of this section, I will drop off the

subscript a from Ĝa for ease of notation.

Finally, with interpolated values Y
(d)
k as given in (3.11), the mean curve µN is estimated by

µ̂
(d)
MA(t) =

1

N

∑
k∈s

dkY
(d)
k (t)− 1

N

(∑
k∈s

dkxk −
∑
k∈U

xk

)T
β̂

(d)

x (t), (3.38)

where β̂
(d)

x (t) = Ĝ−1 1
N

∑
k∈s dkxkY

(d)
k (t) and t ∈ [ti, ti+1], i = 1, ..., DN . Remark that the

estimator µ̂
(d)
MA belongs to C[0, T ] by construction.
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Consistency of the functional model-assisted estimator

For each fixed t ∈ [0, T ], the functional model-assisted estimator is asymptotically equivalent to

the generalized difference estimator:

µ̃(t) =
1

N

∑
k∈s

dkYk(t)−
1

N

(∑
k∈s

dkxk −
∑
k∈U

xk

)T
β̃x(t), (3.39)

where β̃x(t) = G−1 1
N

∑
k∈U xkYk(t) and G =

∑
k∈U xkx

T
k /N. In particular, for each t ∈ [0, T ],

µ̂
(d)
MA(t)− µ(t) = µ̃(t)− µ(t) + op(n

−1/2). (3.40)

Cardot et al. [2013d] prove the uniform consistency of µ̂
(d)
MA which requires showing first the

uniform consistency of β̂
(d)

x (t). We need the following assumptions on the auxiliary information.

Assumption A1. We assume that there is a positive constant C4 such that for all k ∈ U,
||xk||2 < C4.

Assumption A2. We assume that the matrix G is invertible and that the number a chosen

before satisfies ||G−1||2 < a−1.

Proposition 3.8. (Cardot et al. [2013d]) Let assumptions (S1), (S2), (V4) and (A1), (A2)

hold. If the discretization scheme satisfies

max
i∈{1,..,DN−1}

|ti+1 − ti|2β = o(n−1),

then:

Ep

{
sup
t∈[0,T ]

∥∥∥β̂(d)

x (t)− β̃x(t)
∥∥∥} = O(n−1/2) (3.41)

and

Ep

{
sup
t∈[0,T ]

| µ̂(d)
MA(t)− µN (t) |

}
= O(n−1/2). (3.42)

Proof. The proof of (3.41) is similar to the one developed below. It consists in analyzing the

interpolation error as well as the estimation error. We have

sup
t∈[0,T ]

| µ̂(d)
MA(t)− µN (t) |≤ sup

t∈[0,T ]
| µ̂(d)

MA(t)− µ̂MA(t) | + sup
t∈[0,T ]

| µ̂MA(t)− µN (t) |, (3.43)

where

µ̂MA(t) =
1

N

∑
k∈s

dkYk(t)−
1

N

(∑
k∈s

dkxk −
∑
k∈U

xk

)T
β̂x(t),
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with β̂x(t) = Ĝ−1 1
N

∑
k∈s dkxkYk(t). Under the assumption on the repartition of the discretized

points, we have

sup
t∈[0,T ]

√
n | µ̂(d)

MA(t)− µ̂MA(t) |= o(1).

To bound the estimation error, we need to bound the following quantity:

sup
t,r∈[0,T ]

√
n|µ̂MA(t)− µ(t)− µ̂MA(r) + µ(r)|.

This term is dealt with maximal inequalities, more exactly, the corollary 2.2.5 from van der

Vaart and Wellner [2000] is used. According to this corollary, there is a constant B > 0 such

that Ep

(
sup

t,r∈[0,T ]

√
n |µ̂MA(t)− µ(t)− µ̂MA(r) + µ(r)|

)2


1/2

≤ B
∫ T

0

√
D(x, d)dx (3.44)

where D(x, d) is the packing number defined as the maximum number of points in [0, T ] whose

distance d between each pair is strictly larger than x (see van der Vaart and Wellner [2000])

and d is a semimetric defined by

d2(r, t) = nEp|µ̂MA(t)− µ(t)− µ̂MA(r) + µ(r)|2.

Cardot et al. [2013d] showed that there is a constant C such that

d2(r, t) ≤ C|t− r|2β.

Hence, the packing number is bounded as follows: D(x, d) = O(x−1/β), implying that the

integral from the right-hand side of (3.44) is finite when β > 1/2.

Note that the interpolation error is negligible, compared to the sampling variability, under the

additional assumption on the repartition of the discretization points.

Remark 9. A shorter proof of the uniform consistency of µ̂
(d)
MA could have been obtained by

using the definition 3.1 and the uniform consistency of β̂
(d)

x given in (3.41). In fact, we have

µ̂
(d)
MA − µN = µ̃− µN −

1

N

(∑
k∈s

dkxk −
∑
k∈U

xk

)T
(β̂

(d)

x − β̃x) +
∑
k∈s

dk(Y
(d)
k − Yk)
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and

P

(
sup
t∈[0,T ]

√
n|µ̂(d)

MA(t)− µN (t)| > ε

)
≤

P

(
sup
t∈[0,T ]

√
n|µ̃(t)− µN (t)| > ε

3

)
+ P

√n
N

∣∣∣∣∣∑
k∈s

dkxk −
∑
k∈U

xk

∣∣∣∣∣
T

sup
t∈[0,T ]

|β̃x(t)− β̂(d)

x (t)| > ε

3


+P

(
sup
t∈[0,T ]

√
n|
∑
k∈s

dk(Y
(d)
k (t)− Yk(t)| >

ε

3

)

which is going to zero under the assumptions on the discretization points and the fact that

Ep
√
n
N

∣∣∑
k∈s dkxk −

∑
k∈U xk

∣∣ = O(1) under the assumptions on the design and the auxiliary

information.

Variance estimation and confidence bands

Result 3.42 allows us to approximate the covariance function of µ̂
(d)
MA between two instants r

and t by the covariance of µ̃ :

γMA(r, t) =
1

N2

∑
k∈U

∑
l∈U

(πkl − πkπl)
Yk(r)− xTk β̃(r)

πk

Yl(t)− xTl β̃(t)

πl
. (3.45)

The covariance estimator is given by

γ̂
(d)
MA(r, t) =

1

N2

∑
k,l∈s

πkl − πkπl
πkl

·
Y

(d)
k (r)− xTk β̂

(d)

x (r)

πk
·
Y

(d)
l (t)− xTl β̂

(d)

x (t)

πl
, r, t ∈ [0, T ].

(3.46)

It is proven in Cardot et al. [2013d] that the covariance estimator γ̂
(d)
MA is consistent and the

variance function estimator is uniformly convergent. Thus, under additional asymptotic normal-

ity assumptions, it is also possible to build confidence bands with the Monte Carlo procedure

described in Section 3.1.5.

Note that previous model can be extended without difficulties for auxiliary variables that vary

in time, so that we have for each unit of the sample xk(t) = (xk1(t), ..., xkp(t))
T for t ∈ [0, T ].

As in Cardot et al. [2010b] nonparametric models can also be considered by first reducing

the dimension of the data with principal components, as described in Section 3.1.3, and then

consider a single index or an additive model on the principal component scores.
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3.1.9 An application to French electricity load curves

Consider the test population of N = 18902 French companies whose electricity consumption

has been measured every half-hour over a period of two weeks as considered in Cardot and

Josserand [2011] and Chaouch and Goga [2012]. The data recorded over the first week Xk are

used as auxiliary information, while the data recorded over the second week Yk are the study

variable. More exactly, we have 336 instant measures per week and let Xk = (Xk(td))
336
d=1 and

Yk = (Yk(td))
336
d=1. The goal is to estimate the mean curve µN and the median curve mN by

using a sample of size n = 2000 selected according to SRSWOR and STRAT designs.

The population is divided into H = 4 strata constructed according to the maximum level of Xk

and based on the quartiles, so that all the strata have almost the same size. In Cardot et al.

[2013c], two stratification of the population have been used (but not considered here): the first

one was carried out using the k-means classification of the discretized trajectories Xk and the

second one, by using the mean consumption during the first week (see formula 3.47).

The stratum 1, corresponds to consumers with low global consumption level, whereas stratum

4 corresponds to consumers with high global levels of consumption. We plot in Figure 3.4(a),

the mean of Yk within each stratum and in Figure 3.4(b), the mean of the linearized variable

of the median uk,mN
= (uk,mN

(td))
336
d=1 within each stratum. Note that the population of the

linearized variable curves is also stratified.
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Figure 3.4: Stratification based on the consumption curve: (a) Mean of the consumption
curve Yk within each stratum. (b) Mean of the linearized variable uk,mN

within each stratum.
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To draw a STRAT sampling, we use the proportional allocation (PROP) and the x-optimal

allocation (x-OPT) computed with respect to the consumption Xk recorded during the previous

week. Table 3.1 gives the stratum sizes and the sample sizes for both types of allocation.

Stratum number 1 2 3 4

Stratum size Nh 4725 4726 4725 4726

PROP allocation 500 500 500 500

x-OPT allocation 126 212 333 1329

Table 3.1: Strata sizes, proportional and x-optimal allocations for a sample size of n = 2000.

In the following, several sampling designs of size n = 2000 and the HT estimator are compared.

This includes the simple random sampling without replacement (SRSWOR), stratified sampling

with SRSWOR within each stratum and the proportional allocation (STRAT+PROP) as well as

the x-optimal allocation (STRAT+opt), and finally πps sampling. A πps sample of size n = 2000

is selected with first-order inclusion probabilities πk proportional to the mean consumption

recorded during the previous week:

xk =
1

336

336∑
d=1

Xk(td), k ∈ U. (3.47)

To draw such a sample, one may use the fast version of the cube algorithm (see Chauvet and

Tillé [2006]) balanced on the vector of first-order inclusion probabilities π = (π1, ..., πN ) with

πk given by (1.6) and xk by (3.47).

In order to compare these designs, I = 500 samples are drawn. Tables 3.2 and 3.3 give statistics

about the estimation errors computed according to the following loss criterion:

R(θ̂) =

∫ T
0
|θ̂(t)− θ(t)|dt ' 1

336

336∑
d=1

|θ̂(td)− θ(td)|, (3.48)

with θ̂ an estimator of θ.

We can remark that clustering the space of functions by performing stratified sampling leads to

an important gain compared to simple random sampling without replacement especially for the

estimation of the mean curve. STRAT with proportional allocation gives slightly better results

Mean 1st quartile median 3rd quartile

SRSWOR 4.624 2.405 3.694 6.073

STRAT+PROP 3.731 2.116 3.041 4.803

STRAT+OPTIM 2.507 1.605 2.198 3.128

Table 3.2: Estimation errors (criterion 3.48) of the mean curve µN with SRSWOR and STRAT
sampling.
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Mean 1st quartile median 3rd quartile

SRSWOR 2.697 1.362 2.274 3.527

STRAT+PROP 1.632 1.048 1.402 2.017

STRAT+OPTIM 2.263 1.444 1.969 2.865

Table 3.3: Estimation errors (criterion 3.48) of the median curve mN with SRSWOR and
STRAT sampling.

Mean 1st quartile median 3rd quartile

πps for µN 1.816 1.447 1.709 2.081

πps for mN 7.263 2.901 5.918 9.733

πps for mN with B-spline 1.947 1.364 1.711 2.209

Table 3.4: Estimation errors (criterion 3.48) of the mean curve µN and the median curve mN

with the πps sampling.

for the estimation of the median than those obtained with the optimal allocation. This is due

to the fact that the optimal allocation is computed by minimizing the variance of the estimator

for the mean curve.

Table 3.4 gives the estimation errors of the mean and median curve with the πps sampling. We

remark that this design performs very well for the estimation of the mean curve but very poorly

for the estimation of the median. We give in Table 3.4 the estimation errors of the median

estimator obtained by using the B-spline smoothed weights wnp
ks for m = 3, K = 8. We can

remark that the performance of the πps design for estimating mN was greatly improved.

Cardot et al. [2013c] also evaluated the performance of the functional model-assisted estimator.

The test population did not contain any auxiliary information, so that the mean past consump-

tion over the previous week xk has been used as auxiliary information plus the intercept term.

Their correlation with the current consumption is always very high (between 0.85 and 0.95),

so that linear regression models are natural candidates for improving the HT estimator. The

simulation results obtained showed that the functional model-assisted estimator improves a lot

the efficiency of the HT estimator even if it does not performs as well as the πps or the stratified

estimator. However, the main advantage of this estimator with respect to its competitors is that

it only requires the knowledge of the total of the auxiliary information.

Simulation studies showed that the mean width of the confidence bands is greatly reduced

(almost by half) by taking into account auxiliary information at the sampling stage (STRAT or

πps) or at the estimation stage. Computing confidence bands of level 1−α requires computing

cα, the quantile of order 1 − α of the supremum of Gaussian processes. Figure 3.5 shows an

example of confidence band (continuous grey curves). We can remark that, in this situation,

the true mean curve falls within the confidence band.

In order to avoid the estimation of the covariance function, γ̂(d)(r, t), Cardot et al. [2013c] also

considered the bootstrap as suggested by Gross [1980] and adapted for each strategy described
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Figure 3.5: Confidence band (continuous grey curves) for the true mean load curve (continuous
black curve)

above (Chauvet [2007]). The results on the coverage rates and the width of the confidence bands

are very similar to those obtained with the Gaussian processes simulation method. However,

the computation times with the bootstrap are much greater, by a factor of approximately 1 to

1000. The reason for this is that the entire bootstrap process (duplication of the population)

which must be repeated at each simulation.

3.1.10 Conclusion and perspectives

Even if some work has already been done, there are still many fields to explore in the near

future, at the frontier of survey sampling and functional data analysis.

With unequal probability sampling designs, Cardot et al. [2014b] noted that the HT estimator

and his covariance estimator are not robust to the presence of atypical individuals. Such outlying

data may not be uncommon in large samples and another interesting direction of research would

be to consider correction techniques of the samplings weights of the most influential units of the

sample (see e.g. Beaumont and Rivest [2009]) in order to get a more stable variance estimator.

Some work is also needed to adapt what already exists to the functional context.
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In their work, Cardot et al. [2013d] extended the results on uniform consistency obtained by

Cardot and Josserand [2011] for the HT estimator of the mean, µ̂(d), to the functional model-

assisted estimator of the mean µ̂
(d)
MA. In particular, they proved the uniform consistency of

the estimator β̂
(d)

x of the regression coefficient. The parameter of interest β is an example of

nonlinear parameter of totals of functional and multivariate variables. In would be interesting to

give a general approach for obtaining linearization and asymptotic properties of such parameters

by making use of the tightness property. As van der Vaart [1998] remarked, “weak convergence of

random elements in metric spaces is intimately connected with compact sets, through Prohorov’s

theorem, Hadamard differentiability is the right type of differentiability in connection with delta

method.”

The space C[0, T ] is unsuitable for the description of processes that may have jumps. An

example of such data is given by the audience curves recorded at Médiamétrie (the French

company for measuring the audience). Figure 3.6 displays the audience curves recorded every

minute for a sample of 5 individuals. The suitable space for such random functions is D[0, T ],

the space of cadlag functions: continue à droite, limite à gauche. It would be interesting to see

how results developed for random functions belonging to C[0, T ] may be extended to D[0, T ].

Asymptotics in D[0, T ] (extensively described in Billingsley [1968]) is complicated by the loss of

some properties of C[0, T ] such as the separability property with respect to the uniform distance

ρ.

So far, the method of estimation combining functional data analysis and surveys techniques

do not take into account the presence of non-response in individual curves. Trajectories with

missing observations during some intervals of time may not be so rare because of transmission

problems. In order to reconstruct the missing parts of the trajectories, classical methods of

imputation (see Haziza [2009] for a review) can be applied, instant by instant. The disadvantage

of these methods, which are essentially univariate, is that they do not take into account the

history (the temporal correlation) of the individuals. Note also that a further difficulty arises

from the fact that this history can also contain non-response. A second possibility would be to

apply interpolation or smoothing techniques, by adapting to a survey sampling context previous

works (see Staniswalis and Lee [1998]) in nonparametric estimation, on the missing part of the

trajectories. This latter approach would allow to reconstruct individual trajectories by taking

into account not only their history but also the shape of the other trajectories. First works on

this topic have been done in De Moliner et al. [2014], Cardot et al. [2014a]. Further work is

needed to build an imputation method that allows to impute the trajectories taking into account

all the points of observation of the variable of interest for each individuals in our sample as well

as auxiliary information. The nearest neighbor imputation technique (see Chen and Shao [2000],

Shao and Wang [2008] and Beaumont and Bocci [2009]) by its nonparametric point of view and

its simplicity seems to be a good candidate.
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Figure 3.6: A sample of 5 audience curves. The audience is recorded every minute.
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3.2 High-dimensional auxiliary information

Let consider now that a large number of auxiliary variables is available. Chapter 1 presents the

different approches for taking into account the auxiliary information.

In a model-based approach, we have seen that the BLU estimators are model-dependent and

may suffer from large bias if the model is misspecified. As a measure of protection from model

erroneous specification, the balanced sampling (see relation 1.29) was suggested (Royall and

Herson [1973]). Nevertheless, in multipurpose sample surveys, when a large number of finite

population totals or means are to be estimated, it may not be always possible to have a bal-

anced sample. So, many auxiliary variables should be included in order to have a fully specified

model for each variable. But, the inclusion of too many variables may result in an over-specified

model and the unbiased estimators (the BLU estimators) derived in these conditions are unsta-

ble and inefficient. This is why, penalized estimators have been suggested first in a model-based

approach (Bardsley and Chambers [1984]) to overcome with the estimation issues for data ob-

tained from unbalanced samples.

In a calibration approach, estimation in presence of a very large number of calibration variables

was called over-calibration by Guggemos and Tillé [2010]. In a calibration setting, it is often

desired that the values of the ratio between the calibration weights and the sampling weights lie

between positive predefined upper and lower bounds, called also range restrictions and denoted

by U and L. Not satisfying such conditions may be due to the chosen distance Υs and in

order to cope with this issue, several modifications of the distance have been suggested in

the literature (Deville and Särndal [1992]; Jayasuriya and Valliant [1996] and Singh and Mohl

[1996]), but as Beaumont and Bocci [2008] remarked, these methods “are all iterative and may

not yield a solution even if the range restrictions are mild”. Now, if a large number of auxiliary

variables is used, the calibration weights derived in this situation may be unstable and very

large and the range restrictions are difficult to be satisfied. Moreover, auxiliary variables may

be related linearly to each other, and hence can cause multicollinearity. In this case, the matrix∑
k∈s dkxkx

T
k is not a full rank matrix and the calibration weights cannot be computed directly

with (1.15). A generalized inverse of the previous matrix should be used. Théberge [1999]

suggested the minimum norm least squares method and the Moore-Penrose inverse matrix to

derive weights in presence of multicollinearity among regressors.

Finally, let us analyse the impact of having many auxiliary variables on the variance of the

calibration estimator. As Särndal [2007] states, the calibration should bring “the extra benefit

of improved accuracy (lower variance and/or reduced nonresponse bias)”. However, when a very

large number p of auxiliary variables is used, this result is no longer true as it was remarked by

Silva and Skinner [1997] in a simulation study. Recently, Chauvet and Goga [2013a] introduced

the following two additional assumptions on the auxiliary information:

Assumption A3. ||xk||2 = O(p) for all k ∈ U,
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Assumption A4. there exist c and C positive constants such that c < λmin < λmax < C,

where λmin and λmax are the smallest and the largest eigenvalue of N−1
∑

k∈U xkx
T
k ,

When these hypotheses hold, they have showed the following result:

Proposition 3.9. Make the assumptions (S1), (S2) on the sampling design, (V3) on the study

variable and (A3), (A4) on the auxiliary variables.

Then,
1

N
(t̂xd − tx)T (β̂x(d,v)− β̃x(v)) = Op

(
p2

n

)
,

where β̂x(d,v) is given by (1.22) and β̃x(v) by (1.21).

This means that the error between the calibration estimator and the generalized difference

estimator depends on the number p of the auxiliary variables. As a consequence, including

more and more auxiliary variables may alter the performance of the calibration estimator. The

asymptotic variance of the calibration estimator given in (1.18) remains valid only if p = O(na)

with a < 1/2. Otherwise, the extra-variability of (t̂xd − tx)T (β̂x(d,v) − β̃x(v)) should also be

taken into account.

One way to avoid many of the above difficulties, is to choose only a subset of the auxiliary

variables and to consider only the auxiliary variables that are expected to be the more relevant

(Silva and Skinner [1997]; Skinner and Silva [1997]; Chambers et al. [1999]; Clark and Chambers

[2008] and Chauvet and Goga [2013a]). Another alternative is to keep all the variables and to use

different methods such as ridge regression, principal component regression, partial least squares

or lasso methods that are frequently used in classical statistics to deal with high dimensional

data.

3.2.1 Penalization in survey sampling by ridge regression

One way to circumvent the problems due to over-calibration is to relax the calibration con-

straints, meaning that the too restrictive requirement of being exactly satisfied as in (1.13) is

dropped off and replaced by the requirement of being only approximatively satisfied. Neverthe-

less, the deviation between t̂xw =
∑

k∈swkxk and tx =
∑

k∈U xk is controlled by means of a

penalty.

A class of penalized estimators was suggested in a model-based setting and extended later by

Chambers [1996] and by Rao and Singh [1997], Rao and Singh [2009] in a design-based (or

model-assisted) setting. These approaches lead to a class of model-based or GREG-type esti-

mators that use regression coefficients estimated by ridge-type estimators. Goga and Shehzad

[2014b] give a recent review of the application of the ridge-regression in survey sampling and in
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both the model-based and the design-based approaches.

Consider the chi-squared distance Υs((a,b); w) given in (1.30). In a model-based or design-

based setting, the penalized weights wpen
s = (wpen

ks )k∈s are obtained as the solutions of the

following penalized minimization problem:

wpen
s ((a,b);λ) = argminwΥs((a,b); w) + λ−1(t̂xw − tx)TC(t̂xw − tx), (3.49)

where t̂xw =
∑

k∈swkxk = wTXs, λ > 0 is a scale factor and C = diag(cj)
p
j=1 with cj ≥ 0

is a user-specified cost associated with the jth calibration constraint (Bardsley and Chambers

[1984], Chambers [1996]). Beaumont and Bocci [2008] considered that cj is “the cost associated

with not satisfying the jth calibration constraint” and they suggested to take cj = 1/tXj , where

tXj is the population total of Xj . In a calibration approach, Beaumont and Bocci [2008] have

considered the penalized optimization problem (3.49) for more general distance functions Υs

and they suggested a simply iteratively re-weighted chi-square algorithm to obtain the penalized

weights in this case.

The optimization problem (3.49) means that we look for the weights wpen
ks , k ∈ s that best

explain the vector a and such that the weighted estimator t̂xw is close enough to the true total

tx. With this kind of penalization, the finite population total tx is not estimated exactly anymore

by t̂xw but large deviations are penalized by the cost matrix C and the penalty parameter λ.

Proposition 3.10. The solution of (3.49) is

wpen
ks ((a,b);λ) = ak − akb−1

k xTk

(∑
k∈s

akb
−1
k xkx

T
k + λC−1

)−1

(t̂xa − tx) k ∈ s, (3.50)

where t̂xa =
∑

k∈s akxk. The penalized estimator is given by

t̂pen
yw ((a,b);λ) =

∑
k∈s

wpen
ks ((a,b);λ)yk

=
∑
k∈s

akyk −

(∑
k∈s

akxk −
∑
k∈U

xk

)T
β̂x((a,b);λ), (3.51)

where

β̂x((a,b);λ) =

(∑
k∈s

akb
−1
k xkx

T
k + λC−1

)−1∑
k∈s

akb
−1
k xkyk.

We remark that β̂x((a,b);λ) is a ridge-type estimator of the regression coefficient β from the

superpopulation model ξ as suggested by Hoerl and Kennard [1970] in classical statistics. In a

calibration approach, namely for a = d and b = v, we obtain a GREG-type estimator with a

design-based ridge-type estimator β̂x((d,v);λ) :

t̂pen
yw ((d,v);λ) = t̂yd − (t̂xd − tx)T β̂x((d,v);λ).
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In a model-based approach, namely for a = 1s and b = v, we obtain a model-based type

estimator:

t̂pen
yw ((1s,v);λ) =

∑
k∈s

yk +

( ∑
k∈U−s

xk

)T
β̂x((1s,v);λ)

with β estimated by a model-based ridge-type estimator β̂x((1s,v);λ). In fact, the same pe-

nalized GREG or model-based estimators would have been obtained, if we would have plugged-in

the estimator β̂x((d,v);λ) into the generalized difference estimator given in (1.20) or β̂x((1s,v);λ)

into the model-based predictor (1.24). This is not surprising since the ridge-regression was sug-

gested in classical statistics to robustify the ordinary least square estimator of β in presence of

multicollinearity between the regressors from the superpopulation model ξ (Hoerl and Kennard

[1970]).

In order to better understand the improvement brought by imposing a quadratic penalty in

(3.49), consider in detail the following two quantities of interest: the distance Υs between the

initial weights a and the final weights wpen
s , and secondly, the erreur between the weighted

estimator t̂xw and the true total tx. As it will be noticed, the ridge-type estimators may be seen

as a trade-off between full-calibrated and no-calibrated estimators.

The value of the (chi-)squared distance Υs between wopt
s and a tends to be large if there is

a small eigenvalue of
∑

k∈s akb
−1
k xkx

T
k . Indeed, let α̂1 ≥ . . . ≥ α̂p > 0 be the eigenvalues of∑

k∈s akb
−1
k xkx

T
k considered in decreasing order with v̂j the corresponding orthonormal eigen-

vectors. We have

Υs((a,b); wopt
s ) =

∑
k∈s

bk
(wopt

ks − ak)
2

ak

= (t̂xd − tx)T

 p∑
j=1

1

α̂j
v̂jv̂

T
j

 (t̂xd − tx)

which states clearly that the worse the conditioning of
∑

k∈s akb
−1
k xkx

T
k , the more wopt

s can be

expected to be long and far away from a. Consider now the (chi-)squared distance between wpen
s

and a. The penalized matrix
∑

k∈s akb
−1
k xkx

T
k + λC−1 has the eigenvalues α̂1 + λc−1

1 , . . . , α̂p +

λc−1
p with the same eigenvectors v̂j (Hoerl and Kennard [1970]) and we can write:

Υs((a,b); wpen
s ) =

∑
k∈s

bk
(wpen

ks − ak)
2

ak

= (t̂xd − tx)T

 p∑
j=1

α̂j

(α̂j + λc−1
j )2

v̂jv̂
T
j

 (t̂xd − tx).

We always have
1

α̂j
>

α̂j

(α̂j + λc−1
j )2
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for any λ > 0 and cj > 0 and we have that

Υs((a,b); wpen
s ) < Υs((a,b); wopt

s ),

namely, the distance between the penalized weights wpen
s and the initial vector a is shorter than

the distance between the optimal weights wopt
s and a. In particular, we obtain that the scatter

of penalized weights wpen
s is smaller than the one of wopt

s (Bardsley and Chambers [1984]).

On the other side, the weighted error between a weighted estimator t̂xw and the true total tx is

given by

Ψs(w) = (t̂xw − tx)TC(t̂xw − tx) = (t̂xw − t̂opt
xw )TC(t̂xw − t̂opt

xw )

= (w −wopt
s )TXsCXT

s (w −wopt
s ).

Contours of constant Ψs are the surfaces of hyperellipsoids centered at wopt
s . The error Ψs attains

the minimum value Ψmin = 0 for w = wopt
s . We obtain in this case the full-calibrated estimator

(in a design-based approach) or the full-balanced estimator (in a model-based approach). As

mentioned at the beginning of this section, the weights wopt
s may not lie between the range

restrictions when a large number of auxiliary variables is used (in a design-based approach).

On the other side, the weights a satisfy the range restrictions but yield the maximum of Ψs :

Ψmax = (t̂xa − tx)TC(t̂xa − tx) for w = a. So, the optimization problem given by (3.49) can be

viewed as follows: we can move a little away from the minimum sum of squares point Ψmin in

a direction that will shorten the distance Υs. Then, the penalized weight vector is the value of

ws minimizing

wpen
s ((a,b); λ̃) = argminwΥs((a,b); w) subject to (t̂xw − tx)TC(t̂xw − tx) = Ψ0, (3.52)

where Ψ0 is determined from the fixed discrepancies δj (e.g. differences between t̂xw and the

totals tx) and the costs cj , j = 1, . . . , p; λ̃ is the Lagrange multiplier used for solving the above

optimization problem. The choice of discrepancies δj , j = 1, . . . , p is discussed for example in

Rao and Singh [1997].

A completely equivalent statement of the method is the following: we consider that the weights

ws are located at distance Υs((a,b); ws) = r2
0 from the initial weights a, where r0 is such that

the range restrictions L ≤ wk
dk
≤ U are satisfied for all k ∈ U. Then the penalized weight vector

is the value of ws that minimizes the distance Ψ between the estimates t̂xw and their totals tx :

wpen
s ((a,b); λ̃1) = argminw(t̂xw − tx)TC(t̂xw − tx) subject to Υs((a,b); ws) = r2

0, (3.53)

where λ̃1 is the Lagrange multiplier. For a fixed value of Ψ = (t̂xw − tx)TC(t̂xw − tx), the

Lagrange multiplier λ̃1 may be found by means of Newton-Raphson algorithm. Beaumont and

Bocci [2008] suggested the bisection algorithm to find the smallest value of Ψ such that the
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range restrictions are satisfied, knowing that Ψmin = 0 and Ψmax = (t̂xa − tx)TC(t̂xa − tx).

Nevertheless, each iteration of the bisection algorithm needs the computation of the Lagrange

multiplier and verification of the constraint. The combination of both algorithms may be time-

consuming.

Goga and Shehzad [2014b] give a geometrical interpretation of the constrained optimization

problems (3.52) and (3.53) and the way the penalized weights are found. This interpretation is

the analogue of the Marquart and Snee [1975]’s geometrical interpretation given in the case of

classical ridge-regression. Figure 3.7 exhibits this interpretation for the two-dimensional case

ws = (w1s, w2s)
′ and for centered auxiliary variables, namely tx = 0.

Weight vectors satisfying t̂TxwXsCXT
s t̂xw = Ψ lie on an ellipse centered at the origin and weight

vectors satisfying Υs((a,b); ws) = r2 lie on a ellipse centered at a. The largest ellipse centered

at the origin in Figure 3.7 is obtained for Ψ = Ψmax and the initial weight vector a belongs to

this ellipse.

The constrained optimization problem (3.52) means that we fix Ψ = Ψ0 : weight vector ws is

located on the ellipse centered at the origin and of equation (t̂xw − tx)TC(t̂xw − tx) = Ψ0 (the

small ellipse centered at the origin from Figure 3.7). To find the penalized weight vector ws,

we grow up the ellipse centered at a and of equation Υs((a,b); ws) = r2 (the ellipse centered

at d from Figure 3.7) until it touches the first ellipse.

The constrained optimization problem (3.53), means that we fix r = r0, namely ws is located

on the ellipse centered at a and of equation Υs((a,b); ws) = r2
0 (the small ellipse centered

at a from Figure 3.7). We find the ellipse contour centered at the origin and of equation

t̂TxwXsCXT
s t̂xw = Ψ as close as possible to the ellipse centered at a (the small ellipse centered

at the origin from Figure 3.7). The penalized calibration weights wpen
s is the vector at the first

point where the ellipse contour centered at the origin touches the constraint ellipse.

In the context of empirical likelihood approach, Chen et al. [2002] considered discrepancies δj

depending on a tuning parameter δ and they suggested also the bisection algorithm to find δ.

The obtained solution minimises the error t̂xw − tx while satisfying the range restrictions and

being as close as possible from the initial weights. Beaumont and Bocci [2008] established the

link between the cost matrix C and the discrepancy matrix of Chen et al. [2002]. Beaumont

and Bocci [2008] concluded also that “ridge calibration is better than the Chen et al. [2002]

method if minimizing the distance Ψ, for a fixed matrix C of costs, is a desirable goal.” If the

discrepancies δj for j = 1, . . . , p are fixed first, then Rao and Singh [1997] and Rao and Singh

[2009] established the link between cj and δj and suggested a ridge-shrinkage method to find

the penalized weights.
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w10
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s

Figure 3.7: The small ellipse centered at the origin is the set of points in the (w1, w2)-plane
where the sum of squares of residuals is equal to Ψ > Ψmin and the largest ellipse is the set of
points where the sum of squares of residuals is equal to Ψmax. The ellipse centered at a is the

set of points situated at distance r.

3.2.2 Partial penalization

Assuming that 0 < cj < ∞ for all j = 1, . . . , p, one can remark from (3.49), that for λ → 0,

we obtain wpen
s ((a,b);λ)→ wopt

s (a,b) meaning that the constraints are exactly satisfied. The

estimator t̂pen
yw ((a,b);λ) becomes the calibration estimator t̂cal

yw for (a,b) = (d,v), and the BLU

predictor t̂blu
yw for (a,b) = (1s,v). From a practical point of view, weights may be derived by

taking λ = 0 in (3.50).

On the other side, for λ → ∞, we obtain wpen
s ((a,b);λ) → a meaning that the auxiliary

information is not taken into account. The estimator t̂pen
yw ((a,b);λ) becomes t̂yd =

∑
k∈s dkyk

for a = d or t̂y1 =
∑

k∈s yk for a = 1s. Again, from a practical point of view, weights may be

derived by taking a very large value of λ in (3.50).

For fixed λ > 0, we can choose to penalize differently the p constraints. This is done by means

of the costs cj . If some auxiliary variables are not relevant, we can discard them by putting

λ−1cj = 0 in (3.49). Rao and Singh [1997] gave a proof of this result. On the opposite situation,

if some auxiliary variables are important for the survey study, then their population totals

should be estimated exactly. This is accomplished by considering that λ−1cj →∞ in (3.49) for

the jth constraint to be estimated exactly (see Beaumont and Bocci [2008] for a proof). From

a practical point of view, one can put a very large value of c−1
j for the nonbinding constraint

in (3.50). The largest is the value of c−1
j , the less is binding the jth constraint. With c−1

j = 0

in (3.50), the corresponding j-th constraint is binding (e.g. its total tXj should be estimated

exactly).

This kind of partial penalization was first suggested by Bardsley and Chambers [1984]. Let
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write the data matrix X = (X̃1, X̃2) with X̃1 containing the q binding variables, such as socio-

demographic variables, and X̃2 the other p − q variables. The partial penalized weights are

easily obtained from (3.50) for the inverse cost matrix C given by

C−1 =

(
0(q,q) 0(q,p−q)
0(p−q,p) C−1

2

)
, (3.54)

where C2 = diag(cj)
p
j=q+1 is the diagonal cost matrix of size (p − q) × (p − q) associated with

X̃2. Let call wppen
s the partial penalized weights. Park and Yang [2008] and Guggemos and Tillé

[2010] were concerned by the same issue but they considered a different optimization problem:

wppen
s = argminwΥs((a,b); w) + λ(t̂x2w − tx2)TC2(t̂x2 − tx2w) subject to (3.55)

t̂x1w = tx1

where the subscript 1 refers to X̃1 and subscript 2 to X̃2. The above optimization problem states

clearly that exact calibration on variables from X̃1 is realized while this fact should be proven

for the Bardsley and Chambers’s optimization problem. But, the weights solution of (3.56)

derived by Guggemos and Tillé [2010] are rather complicated and they are not reported here.

Using matrix calculus, Goga and Shehzad [2014a] show in a recent paper that the optimization

problem of Bardsley and Chambers’s with C−1 given by (3.54) and the Guggemos and Tillé’s

optimization problem from (3.56) lead to the same vector of partially penalized weights. Goga

and Shehzad [2014a] suggest a kind of combined strategy: the penalized weights minimize the

Guggemos and Tillé’s constrained optimization problem (3.56) and their expression are given by

relation (3.50) with C−1 given by (3.54) obtained with Bardsley and Chambers’s optimization

problem. Guggemos and Tillé [2010] use the Fisher scoring algorithm to compute λ.

We mention also that Park and Yang [2008] were concerned by the estimation of the mean

yU =
∑

k∈U yk/N by using a weighted estimator with weights summing up to unity and as

close as possible to the Hájek [1971]’s weights. This is why, their estimator is obtained for

a = (di/
∑

k∈s dk)i∈s.

Asymptotic properties

Both model-based and design-based penalized estimators are biased under the model ξ. Bardsley

and Chambers [1984] claimed that the model-based ridge estimator t̂pen
yw ((1s,v);λ) has smaller

prediction variance than the BLU predictor t̂blu
yw but they did not prove it. Using un intermediate

result and arguments of Vinod and Ullah [1981], Bellhouse [1987] shows that under the model

ξ with vk = σ2 for all k and the cost matrix C−1 = κIp with κ satisfying 0 < κ < 2σ2

βTβ
:

EξEp(t̂pen
yw ((1s,v);λ)− ty)2 < EξEp(t̂blu

yw − ty)2.

A similar result was proved by Theobald [1974] for classical ridge-regression. A necessary and

sufficient condition for the ridge estimator t̂pen
yw ((1s,v);λ) to be more efficient than the BLU
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predictor t̂blu
yw is 0 < κ < 2/(−min(0, ψ)), where ψ is the minimum eigenvalue of (XT

s Xs)
−1− βTβ

σ2

(Swindel and Chapman [1973]). In a design-based setting, Park and Yang [2008] determined

the optimal values of the penalty matrix C2 from (3.54).

In a design-based framework, the concern is about the asymptotic properties of t̂pen
yw ((d,v);λ)

with respect to the sampling design p. Rao and Singh [1997] stated that “an important require-

ment while relaxing benchmark constraints is that for given tolerance levels, the calibration

method should ensure design consistency like the generalized regression method.” Under broad

assumptions, the design-based ridge estimator β̂x((d,v);λ) tends in probability to

β̃x(v;λ) =

(∑
k∈U

v−1
k xkx

T
k + λC−1

)−1 ∑
k∈U

v−1
k xkyk,

and the ridge estimator t̂pen
yw ((d,v);λ) is asymptotically equivalent to

t̃diff
y,x(λ) = t̂yd −

(
t̂xd − tx

)T
β̃x(v;λ)

This implies that t̂pen
yw ((d,v);λ) is asymptotically design-unbiased and consistent under the

broad assumptions used for the design-unbiasedness and consistency of the HT estimators t̂yd

and t̂xd (Rao and Singh [1997]; Théberge [2000]). Then, the asymptotic variance under the

sampling design of t̂pen
yw ((d,v);λ) is the HT variance applied to the residuals yk − xTk β̃x(v;λ).

3.2.3 Calibration on principal components

Cardot et al. [2014c] suggest another class of penalized calibration estimators which is based

on principal component analysis (PCA). In multivariate statistics, PCA is one of the most

popular techniques for reducing the dimension of a set of quantitative variables (see e.g. Jolliffe

[2002]) by extracting most of the variability of the data by projection on a low dimension

space. Principal component analysis consists in transforming the initial data set into a new set

of a few uncorrelated synthetic variables, called principal components (PC), which are linear

combinations of the initial variables with the largest variance. The principal components are

”naturally” ordered, with respect to their contribution to the total variance of the data, and the

reduction of the dimension is then realized by taking only the first few PCs. PCA is particularly

useful when the correlation among the variables in the dataset is strong.

The method suggested by Goga et al. [2011], Shehzad [2012] and Cardot et al. [2014c] consists

in reducing the number of auxiliary variables by considering a small number of PC’s and by

performing calibration on these new synthetic variables. The method is easy to put into practice

with a software computer used for performing calibration, such as CALMAR used at the French

National Statistical Institut (Insee), since with centered data, these new calibration variables

are also centered.

Complete auxiliary information

We suppose without loss of generality that the auxiliary variables are centered, namely tx/N = 0.
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We suppose also that the auxiliary information is complete, namely the p-dimensional vector

xk is known for all the units k ∈ U.
Let X be the N × p matrix having xTk , k ∈ U as rows. The variance-covariance matrix of the

initial variables X1, . . . ,Xp is given by N−1XTX. Let λ1 ≥ . . . ≥ λp ≥ 0 be the eigenval-

ues of N−1XTX considered in decreasing order with v1, . . . ,vp the corresponding orthonormal

eigenvectors,

1

N
XTXvj = λjvj , j = 1, . . . , p. (3.56)

For j = 1, . . . , p, the jth principal component, denoted by Zj , is defined as follows

Zj = Xvj = (zkj)k∈U . (3.57)

We will only consider the first r (with r < p) principal components, Z1, . . . ,Zr, which corre-

spond to the r largest eigenvalues. In a survey sampling framework, the goal is not to give

interpretations of these new variables Z1, . . . ,Zr as it is the custom in PCA. These variables

serve as a tool to obtain calibration weights which are more stable than the calibration weights

that would have been obtained with the whole set of auxiliary variables.

More exactly, we want to find the principal component (PC) calibration estimator

t̂pc
yw(r) =

∑
k∈s

wpc
ks(r)yk,

where the PC calibration weight vector wpc
s (r) = (wpc

ks(r))k∈s is the solution of the optimization

problem (1.12) and subject to ∑
k∈s

wpc
ks(r)zkr =

∑
k∈U

zkr,

where zTkr = (zk1, . . . , zkr) is the vector containing the values of the r first PCs computed for

the k-th individual. Considering the chi-square distance function Υs, defined in (1.14), the PC

calibration weights wpc
ks(r)’s are given by

wpc
ks(r) = dk − dkzTkr

(∑
k∈s

dkzkrz
T
kr

)−1

(t̂zrd − tzr),

where t̂zrd =
∑

k∈s dkzkr is the HT estimator of the total tzr = (0, . . . , 0) since we have supposed

that the original variables have mean zero so that the principal components are also centered

variables. The total ty is again estimated by a GREG-type estimator which uses Z1, . . . ,Zr as

auxiliary variables

t̂pc
yw(r) = t̂yd −

(
t̂zrd − tzr

)T
γ̂z(r), (3.58)
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where γ̂z(r) is given by 5 :

γ̂z(r) =

(∑
k∈s

dkzkrz
T
kr

)−1∑
k∈s

dkzkryk. (3.59)

The PC calibration estimator t̂pc
yw(r) depends on the number r of the PC variables and we can

note that if r = 0, that is to say if we do not take auxiliary information into account, then

t̂pc
yw(0) is simply the HT estimator (or the Hájek estimator if the intercept term is included

in the model) whereas if r = p, we get the calibration estimator which takes account all the

auxiliary variables.

Calibration on second moment of PC’s

Remark that, with complete auxiliary information, the totals of squares of the PCs are known

since
1

N
ZTj Zj =

1

N

∑
k∈U

z2
kj = λj , for all j = 1, . . . , p.

Cardot et al. [2014c] suggested considering additional calibration on the second moment of

these PCs. The estimator derived in this way is expected to perform better than the estimator

calibrated only on the first moment of the principal components (Särndal [2007], Ren [2000]).

Nevertheless, calibration on the second moment of the PCs requires r additional calibration

constraints.

A model-assisted point of view

As the ridge regression (Hoerl and Kennard [1970]), the principal component regression (PCR) is

a biased estimation method of the coefficient of regression (Jolliffe [2002]) suggested to overcome

the problem of multicollinearity between the regressors.

Consider again the superpopulation model given in (1.19) and let G = (v1, . . . ,vp). Then, the

model ξ may be written in the equivalent form

ξ : yk = zTk γ + εk,

where γ = GTβ and zTk = (zk1, . . . , zkp) with zkj the value of Zj for the kth individual. Principal

component regression consists in using a reduced model which uses as predictors only the r first

PCs, Z1, . . . ,Zr, as follows

ξr : yk = zTkrγ(r) + εkr, (3.60)

5Throughout this section, qk = 1 for all k ∈ U and the calibration approach is used; so, for ease of notation,
the arguments (q,v) are dropped off from the expression of the estimators of the regression coefficient.
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where γ(r) is a vector of r elements that are a subset of elements of γ and εkr is the appropriate

error term of zero mean. Using least squares to estimate γ(r), we obtain

γ̃z(r) = (
∑
k∈U

zkrz
T
kr)
−1
∑
k∈U

zkryk (3.61)

which in turn can be estimated, on a sample s, by the design-based estimator γ̂z(r) given by

(3.59). We can see now that the PC calibration estimator given in (3.58) is in fact a GREG-

type estimator assisted by the reduced model ξr from (3.60). Note also that since the PC’s

are centered and uncorrelated, the matrix
∑

k∈U zkrz
T
kr is diagonal, with diagonal elements

λ1N, . . . , λrN.

When there is strong multicollinearity among the auxiliary variables, than the well-known or-

dinary least squares estimator of β

β̃x =

(
1

N

∑
k∈U

xkx
T
k

)−1
1

N

∑
k∈U

xkyk,

is very sensitive to small changes in xk and yk and it has a very large variance (Hoerl and

Kennard [1970]). To understand better how small eigenvalues affect the efficiency of β̃x, Gunst

and Mason [1977] write this estimator as follows:

β̃x =

p∑
j=1

1

λj
vTj

(
1

N

∑
k∈U

xkyk

)
vj .

Approximating the covariance matrix 1
NXTX by the rank r matrix

(∑r
j=1 λjvjv

T
j

)
leads to

consider the following approximation to the regression estimator that is based on the r first

principal components:

β̃
pc
x (r) = Grγ̃z(r) =

r∑
j=1

1

λj
vTj

(
1

N

∑
k∈U

xkyk

)
vj , (3.62)

where Gr = (v1, . . . ,vr). This means that β̃
pc
x (r) is obtained by subtracting from β̃x the part

of the data that belongs to the p − r dimensional space with the smallest variance and by

performing the regression in the r dimensional space that contain most of the variability of the

data. Note that ridge-regression (Hoerl and Kennard [1970]) which is an alternative way of

dealing with the multicollinearity issue, consists in adding a positive term λ to all eigenvalues

λj , j = 1, . . . , p. Both the ridge regression estimator and the principal components estimator

β̃
pc
x (r) are biased for β under model ξ (Gunst and Mason [1977]).

The PC regression estimator β̃
pc
x (r) is estimated under the sampling design by

β̂
pc

x (r) = Grγ̂z(r), (3.63)
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where γ̂z(r) is given by (3.59). Using relation (3.63) and the fact that Zj = Xvj , we obtain

that (
t̂zrd − tzr

)T
γ̂z(r) =

(
t̂xd − tx

)T
β̂

pc

x (r). (3.64)

So, t̂pc
yw(r) may be written in the following form

t̂pc
yw(r) = t̂yd −

(
t̂xd − tx

)T
β̂

pc

x (r). (3.65)

As a consequence, t̂pc
yw(r) may be seen as a GREG-type estimator assisted by the model ξ when

β is estimated by β̂
pc

x (r).

3.2.4 Partial calibration with principal components

The calibration estimator derived before does not allow to find the exact finite population totals

of the initial variables Xj , j = 1, . . . , p. In practice, it is often desired to have this property

satisfied for socio-demographical variables such as sex and socio-professional category. Let

X = (X̃1, X̃2),

where X̃1 contains p1 variables, with p1 small, for which exact calibration is desired and X̃2

containing the remaining p2 = p − p1 variables. Cardot et al. [2014c] suggest to calibrate on

the auxiliary variables from X̃1 and on the r1 first PC’s Z̃j , j = 1, . . . , r1 of (IN −PX̃1
)X̃2 with

PX̃1
= X̃1(X̃T

1 X̃1)−1X̃T
1 . The calibration variables are (X̃1, Z̃1, . . . , Z̃r1) of zero totals and the

partial principal component (PPC) calibration estimator of ty is

t̂ppc
yw (r) =

∑
k∈s

wppc
ks (r)yk,

where the PPC calibration weights wppc
ks (r)’s minimize (1.12), subject to

∑
k∈s

wppc
ks (r)

(
x̃k

z̃kr1

)
=
∑
k∈U

(
x̃k

z̃kr1

)
,

where x̃k = (x̃k1, . . . , x̃kp1) is the vector of the values of variables contained in X̃1 and zTkr1 =

(z̃k1, . . . , z̃kr1) is the vector of the values of Z̃1, . . . , Z̃r recorded for the k-th individual. Breidt

and Chauvet [2012] use a similar technique at the sampling stage by considering penalized

balanced sampling.

3.2.5 Calibration on estimated principal components

Cardot et al. [2014c] suggest calibration on estimated principal components to deal with the

situation when the auxiliary information is not complete, namely we know the totals of Xj only.
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As a consequence, the eigenvalues and eigenvectors of the variance-covariance matrix can not

be computed.

Let Γ̂ be the design-based estimator of the variance-covariance matrix Γ = 1
NXTX given by

Γ̂ =
1

N̂

∑
k∈s

1

πk
(xk − X̂)(xk − X̂)T =

1

N̂

∑
k∈s

1

πk
xkx

T
k − X̂X̂

T
(3.66)

where N̂ =
∑

k∈s
1
πk

and X̂ =
1

N̂

∑
k∈s

1

πk
xk. Let λ̂1 ≥ . . . ≥ λ̂p be the eigenvalues of Γ̂ considered

in decreasing order with v̂1, . . . , v̂p the corresponding eigenvectors. Cardot et al. [2014c] suggest

estimating the unknown Zj given in (3.57) as follows

Ẑj = Xv̂j .

Note that Ẑj = (ẑkj)k∈U is known only for the sampled units, but its population total tẐj
=∑

k∈U ẑkj , is equal to zero since tẐj
= tTx v̂j = 0, j = 1, . . . , p. Consider now the first r

estimated PC

Ẑ1, . . . , Ẑr

corresponding to the r largest eigenvalues λ̂j . Remark that the number of PC considered here

may be different from the one considered in the section 3.2.3 but, for ease of notation, we will

use the same r.

The estimated principal component (EPC) calibration estimator of ty is

t̂epc
yw (r) =

∑
k∈s

wepc
ks (r)yk,

where the EPC calibration weights wEPCks ’s are the solution of the following optimization problem

(1.12) and subject to ∑
k∈s

wepc
ks (r)ẑkr =

∑
k∈U

ẑkr,

where ẑTkr = (ẑk1, . . . , ẑkr) is the vector of values of Ẑj , j = 1, . . . , r recorded for the kth unit.

With the chi-squared distance function Υs given by (1.14), the EPC calibration estimator for

ty is again a GREG-type estimator given by

t̂epc
yw (r) = t̂yd −

(
t̂xd − tx

)T
β̂

epc

x (r) (3.67)

where β̂
epc

x (r) = (v̂1, . . . , v̂r)(
∑
k∈s

dkẑkrẑ
T
kr)
−1
∑
k∈s

dkẑkryk.
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Asymptotic properties

The same asymptotic framework from Isaki and Fuller [1982] is considered. Under mild assump-

tions on the sampling design and on the study and auxiliary variables, the estimators t̂pc
yw(r)

and t̂epc
yw (r) are proven to be asymptotically equivalent to the generalized difference estimator

t̃diff
y,x(r) = t̂yd −

(
t̂xd − tx

)T
β̃

pc
x (r).

In particular, we obtain their consistency and ADU-ness with respect to the sampling design.

Proposition 3.11. (Cardot et al. [2014c]) Make the assumptions (S1), (S2), (V3) and (A1).

Suppose also that λr > λr+1 ≥ 0. Then, γ̂z(r)− γ̃z(r) = Op(n
−1/2) and

N−1(t̂pc
yw(r)− ty) = N−1

(
t̃diff
y,x(r)− ty

)
+ op(n

−1/2).

A similar result may be stated for the EPC calibration estimator.

Proposition 3.12. (Cardot et al. [2014c]) Make the assumptions (S1), (S2), (V3) and (A1).

Suppose also that λr > λr+1 ≥ 0. Then, β̂
epc

x (r)− β̃pc
x (r) = Op(n−1/2) and

1

N
(t̂epc
yw (r)− ty) =

1

N

(
t̂diff
y,x(r)− ty

)
+ op(n

−1/2).

The proof follows the same lines as in Breidt and Opsomer [2000] and uses the consistency of

λ̂j and v̂j as proven in Cardot et al. [2010a] (relations 3.23 and 3.24). Remark that even if both

estimators t̂pc
yw(r) and t̂epc

yw (r) have the same asymptotic variance given by

Vp(t̃diff
y,x(r)) =

∑
k∈U

∑
k∈U

(πkl − πkπl)dkdl
(
yk − xTk β̃

pc
x (r)

)(
yl − xTl β̃

pc
x (r)

)
(3.68)

the variance estimators are different since β̃
pc
x (r) is estimated by β̂

pc

x (r) for complete information

and by β̂
epc

x (r) otherwise. The asymptotic variance as well as the variance estimators may be

written with respect to the principal components Zj by using relation (3.64).

3.2.6 A small illustration on CER electricity data

Cardot et al. [2014c] illustrate the interest of using PC calibration on the Irish Commission for

Energy Regulation (CER) Smart Metering Project that has been conducted in 2009-2010 (CER,

2011)6. In this project, which focuses on energy consumption and energy regulation, about 6000

smart meters have been installed in order to collect every half an hour, over a period of about

two years, the electricity consumption of Irish residential and business customers.

6The data are available on request at the address: http://www.ucd.ie/issda/data/commissionforenergyregulation/
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We evaluate the interest of employing reduction dimension techniques based on PCA by consid-

ering a period of 14 consecutive days and a population of N = 6291 smart meters (households

and companies). Thus, we have for each unit k in the population (2×7)×48 = 672 measurement

instants and we denote by yk(tj), j = 1, . . . 672 the data corresponding to unit k where yk(tj) is

the electricity consumption (in kW) associated to smart meter k at instant tj . Our variable of

interest is the total electricity consumption over the second week,

ty =
∑
k∈U

672∑
j=336

yk(tj).

The auxiliary information is the load electricity curve of the first week. This means that we

have p = 336 auxiliary variables, which are the consumption electricity levels at each of the

p = 336 half hours of the first week. A sample of 5 auxiliary information curves is drawn

in Figure 3.8. The condition number of N−1XTX is 67055.78, which means that the matrix

is really ill-conditioned and there are strong relationships between the calibration variables.

Reducing the dimension should improve the performances of calibration.

To make comparisons we draw I = 1000 samples of size n = 600 (the sampling fraction is about

0.1) according to a simple random sampling design without replacement and we estimate the

total consumption ty over the second week with the following estimators : the HT estimator,

denoted by t̂yd, the calibration estimator t̂yw that takes account of all the p = 336 auxiliary

variables plus the intercept term and finally, the estimated principal components calibration

estimator t̂epc
yw (r) that takes account of r estimated PC plus the intercept term. The dimension

r plays the role of a tuning parameter.

In Figure 3.9, we represent the boxplot of the EPC weights for different values of r, the num-

ber of PCs. We clearly see that these weights have larger values and they also become more

heterogeneous as the number r of principal components becomes large.

The accuracy of the estimators are evaluated by comparing their mean square errors to the

mean square error of the calibration estimator t̂yw. The relative mean square error is defined

as follows,

R(θ̂) =

∑I
i=1(θ̂(i) − ty)2∑I
i=1(t̂

(i)
yw − ty)2

, (3.69)

where θ̂ is the HT estimator t̂yd or the EPC calibration estimator t̂epc
yw (r). The HT estimator

conducts very bad, R(t̂yd) = 23.3. We computed this ratio for several values of r, (see Fig-

ure 3.10), starting from r = 1 to r = 336 which leads to the calibration estimator t̂yw using all

the auxiliary information. We remark that the ratio is roughly decreasing for r = 9 PC and

then, it is increasing up to 1 when the number of PC is also increasing. So, with only 9 PC

the variance of the EPC calibration estimator is almost half of the variance of the calibration

estimator based on the whole auxiliary information.
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Figure 3.8: A sample of 5 electricity load curves observed during the first week.
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Figure 3.9: Distribution of the sampling weights for different values of the dimension r.
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Figure 3.10: Evolution of the relative MSE, defined in (3.69), according to the dimension r.

3.2.7 Conclusion and perspectives

A simple dimension reduction technique based on principal components calibration has been

studied in this article. It provides an effective technique for approximate calibration when the

number of auxiliary variables is large and can improve significantly the estimation compared

to calibration on the whole set of initial auxiliary variables. Furthermore this simple technique

can also be modified so that calibration can be exact for a set of a few important auxiliary

variables. We have also noted in the previous Section that a bad choice of the number of prin-

cipal components which are used as calibration variables may not have dramatic consequences.

Nevertheless, finding automatic data-driven procedures that could help in choosing a reasonable

values for the dimension r is of real interest.

From a more theoretical point of view, it would be interesting to examine what happens when

the number p of auxiliary variables is also allowed to tend to infinity when the sample size

grows. Different situations about the asymptotic behavior of the smallest eigenvalue of matrix
1
NpX

TX may be distinguished. According to the fact that it tends to zero or not, different

conclusions on how the number of principal components should be chosen may be drawn. This

difficult problem is related to functional data analysis and inverse problems techniques.

In this work, it was supposed that the auxiliary information may be recorded for at least the

sample individuals. Or, it may arrive that this information may be missing for some individuals.
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Another direction for further work would be to use techniques conceived for conducting PCA

with missing data and adapt them to the survey sampling setting.
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de 46è Journées de Statistique, Rennes.

Degras, D. (2011). Simultaneous confidence bands for non-parametric regression with functional

data. Statistica Sinica, 21(4):1735–1765.

Demnati, A. and Rao, J. (2004). Linearization variance estimators for survey data. Survey

Methodology, 30:17–26.
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